MATH 4332/6313

Introduction to Real Analysis Spring 2018

First name:	Last name:	Points:
-------------	------------	---------

Assignment 3, due Thursday, February 15, 8:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Find an example for two metric spaces (X, d) and (Y, ρ) , a continuous function $f: X \to Y$ and a Cauchy sequence $\{p_n\}_{n\in\mathbb{N}}$ in X which is not mapped to a Cauchy sequence in Y.

Problem 2

Let (X, d) and (Y, ρ) be metric spaces. Prove that if $f: X \to Y$ is continuous, then for any set A in X with closure \overline{A} ,

- a. we have $f(\overline{A}) \subset \overline{f(A)}$
- b. and this inclusion can be proper, i.e. give an example for which $f(\overline{A}) \neq \overline{f(A)}$.

Problem 3

Let (X,d) and (Y,ρ) be metric spaces, X compact. Show that if $f:X\to Y$ is continuous, one-to-one and onto, then f^{-1} is continuous.

Problem 4

Show that the completion of a metric space (X, ρ) is compact if and only if X is totally bounded.