MATH 4332/6313

Introduction to Real Analysis Spring 2018

First name:		ast name:	Points:
-------------	--	-----------	---------

Assignment 8, due Thursday, April 19, 8:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

- 1. If $x_0, x_1, \ldots x_n$ are distinct points in [A, B] and $a_0, a_1, \ldots a_n$ are in \mathbb{R} , show that there is a unique polynomial p_a of degree at most n such that $p_a(x_j) = a_j$ for each j. Hint: Find polynomials q_j such that $q_j(x_k) = 0$ for each $k \neq j$ and $q_j(x_j) = 1$. You may express them in factorized form.
- 2. Next, show that there is a constant M such that for all $a = (a_0, a_1, \ldots, a_n), \|p_a\|_{\infty} \leq M\|a\|_2$.

Problem 2

Suppose that $f \in C([a,b])$, $\epsilon > 0$ and $x_1, x_2, \dots x_n$ are points in [a,b]. Prove that there is a polynomial p such that $p(x_i) = f(x_i)$ and $||f - p||_{\infty} < \epsilon$. Hint: First approximate f closely by some polynomial of sufficiently high degree, then use the result of the previous problem to adjust this approximation.

Problem 3

Let Q_n be the space of polynomials of maximal degree n such that each $p \in Q_n$ satisfies p(0) = p(1) = 0. Let $f \in C([0,1])$, f(0) = f(1) = 0. Explain why among all $p \in Q_n$, there is a minimizer for the function $E: p \mapsto ||p - f||_{\infty}$.

Problem 4

If $f \in C([-1,1])$ is an even (odd) function, then show that the best approximation among the polynomials of degree n is also even (odd).

Problem 5

Assume $f \in C([a, b])$ is twice continuously differentiable and f''(x) > 0 on [a, b]. Show that the best linear approximation (a polynomial of degree one) p to f has the slope p'(x) = (f(b) - f(a))/(b-a).