MATH 4332/6313

Introduction to Real Analysis Spring 2018

First name:	Last name:	Points:
-------------	------------	---------

Assignment 9, due Thursday, April 26, 8:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Compute the Fourier series of the following functions on $[-\pi, \pi]$:

a.
$$f(t) = \cos^3(t)$$
,

b.
$$f(t) = |\sin t|$$
,

c.
$$f(t) = t$$
.

Problem 2

Show that the Fourier series for $f(x) = x^2$ on $[-\pi, \pi]$ is given by

$$\frac{\pi^2}{3} - 4\sum_{k=1}^{\infty} (-1)^{k-1} \frac{\cos(kx)}{k^2}$$

and assuming (uniform) convergence, together with an appropriate choice of x, show that

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \, .$$

Problem 3

Recall that from the results in class, $|x| = \frac{\pi}{2} - \frac{4}{\pi} \sum_{j=1}^{\infty} \frac{1}{(2j-1)^2} \cos((2j-1)x)$ for each $x \in [-\pi, \pi]$ where the series converges uniformly and also with respect to the metric induced by the norm $\|\cdot\|_2$, with $\|f\|_2 = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx\right)^{1/2}$.

- a. Prove that if $f \in C_{per}([-\pi, \pi])$ and $S_N f$ denotes the N-th partial sum of the Fourier series, then $\lim_{N\to\infty} \|S_N f\|_2^2 = \|f\|_2^2$.
- b. Use this result together with the concrete choice of f(x) = |x| to show that

$$\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90} \,.$$

Hint: Split the sum into two sums, over even and odd k. Simplify.