Practice Exam 1 – Math 4332/6313 February, 2018

First name:	Last name:	Last 4 digits student ID:

1 True-False Problems (4 points each)

Put a circle around T beside each statement that is true, and a circle around F beside each statement that is false.

Throughout (X, d) denotes an arbitrary metric space.

- T / F For $r > 0, p \in X$ the set $B_r(p)$ is never a closed set.
- T / F If $C \subseteq X$ has the property that every sequence has a subsequence that converges to a point in C, then C is closed.
- T / F If $f: X \to Y$ is a function, (X, d) is the discrete metric space and (Y, ρ) is any metric space then f is continuous.
- T / F If $K \subseteq X$ has the property that every convergent sequence in K is bounded, then K is compact.
- T / F $\,$ If C is closed and U is open, then $C \cup U'$ is closed.
- T / F A closed and bounded subset of a metric space is compact.

In the following problems, you may quote statements from class or homework to simplify your answers.

2 Problem

Let $X = [0,1) \cup (2,3]$, with metric d given by d(x,y) = |x-y|. Prove that [0,1) is a closed subset of X.

Let (X,d) be a metric space and $A\subset X$ be totally bounded. Show that the closure \overline{A} is totally bounded.

Let ρ be the discrete metric on \mathbb{R} and d be the usual metric on \mathbb{R} . Show that the function f(x) = x from (\mathbb{R}, ρ) to (\mathbb{R}, d) is continuous and one-to-one but that f^{-1} is not continuous.

Let (K, d) be a compact metric space and f_1 , f_2 (uniformly) continuous, real-valued functions on K. Prove that $f_1f_2: x \mapsto f_1(x)f_2(x)$ is uniformly continuous on K.

Let (X,d) be a metric space and let $K_1, K_2, K_3,...$ be a sequence of nonempty compact sets in X with $K_1 \supset K_2 \supset \cdots \supset K_j \supset K_{j+1}$ for any $j \geq 2$, then show that $\bigcap_{j=1}^{\infty} K_j$ is non-empty. Hint: Consider a sequence $\{x_n\}_{n=1}^{\infty}$ with $x_n \in K_n$ for each $n \in \mathbb{N}$.

[empty page]