Practice Final Exam – Math 4332 April, 2018

First name:	Last name:	Last 4 SID:
1 True-False P	roblems	
Put T beside each stat	ement that is true, F beside each sta	tement that is false.
	(ρ) denote arbitrary metric spaces, onto, then Y is complete.	X is complete and $f:X\to Y$ is
If a function <i>f</i> series is uniform	$: [-\pi,\pi] o \mathbb{R}$ is bounded and Rienally convergent.	nann integrable, then its Fourier
For the remaining continuous and $A \subset \mathbb{F}$	true-false problems, all spaces are	Euclidean spaces, $f:\mathbb{R} \to \mathbb{R}$ is
	then $f(A)$ is compact.	
If A is closed the	en $f(A)$ is closed	
\square If A is bounded	then $f(A)$ is bounded.	
	z constant 1, then it has a unique fix	ed point.
In the following problems, you may quote statements from class to simplify your		

answers. You do not need to give a proof of a statement if it was discussed in class.

Let (X,d) and (Y,ρ) be metric spaces. Show that $Z=\{(x,y):x\in X,y\in Y\}$, equipped with $\gamma:Z\to\mathbb{R}$ by $\gamma((x_1,y_1),(x_2,y_2))=d(x_1,x_2)+\rho(y_1,y_2)$ is a metric space.

Suppose X,Y are metric spaces and $f,g:X\to Y$ are continuous functions. Prove that the set $A=\{x\in X:f(x)=g(x)\}$ is closed in X.

Let \mathbb{R} and \mathbb{R}^2 be equipped with the usual (Euclidean) metrics. Prove that if K_1 and K_2 are two compact subsets of \mathbb{R} , then the set

$$K = \{(x, y) : x \in K_1, y \in K_2\}$$

is compact in \mathbb{R}^2 .

Let (X,d) be a metric space. Prove that a sequence $\{p_n\}_{n\in\mathbb{N}}$ is convergent if and only if it is Cauchy and it has a convergent subsequence.

Let $f:[-1,1]\to\mathbb{R}$ be continuously differentiable and assume there is $0\leq\epsilon<1/2$ such that $|f'(x)-1|\leq\epsilon$ for all $x\in[-1,1]$.

(a) Show that for any x,u such that $x,x+u\in [-1,1]$, $|f(x+u)-f(x)-u|\leq |u|/2$.

(b) With the additional assumption f(0) = 0, show that $|x - f(x)| \le |x|/2$.

(c) Again with the additional assumption f(0)=0, show that for each fixed $y\in [-1/2,1/2]$, the function $g_y(x)=y+x-f(x)$ is a contraction mapping on [-1,1].

(d) With the assumption as in (b) and (c), show that there exists $h: \mathbb{R} \to \mathbb{R}$ such that h(f(x)) = x for all $x \in [-1/4, 1/4]$.

Let $f(x) = e^x$. Find the Taylor series of f at a = 1 and state its radius of convergence.

Show that if f is continuous on [0,1] and

$$\int_0^1 f(x)dx = 0,$$

then there is a sequence of polynomials $(p_n)_{n=1}^{\infty}$ such that $p_n \to f$ uniformly on [0,1] and for each $n \in \mathbb{N}$, $\int_0^1 p_n(x) dx = 0$.

Let
$$f(x) = x$$
 on $[-\pi, \pi]$.

1. Compute the Fourier coefficients of the function f.

2. Use the identity between the squared norm of the function and a series involving the Fourier coefficients to compute $\sum_{k=1}^{\infty} \frac{1}{k^2}$.

Find the closest linear function p to $f(x)=x^3$ on [-1,1], meaning p(x)=ax+b for $a,b\in\mathbb{R}$ and $\|f-p\|_{\infty}$ is minimal among all such linear functions in C([-1,1]). Hint: Recall the properties of Chebyshev polynomials and the facts $T_0(x)=1$, $T_1(x)=x$ and $T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)$ for $n\geq 2$.

[empty page]