MATH 4332/6313
 Introduction to Real Analysis
 Spring 2020

First name: \qquad Last name: \qquad Points:

Assignment 1, due Thursday, January 23, 8:30am

Please staple this cover page to your homework. Circle your course number, 4332 or 6313. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Find all intervals on which the sequence of real-valued functions $\left(f_{n}\right)_{n=1}^{\infty}$ on \mathbb{R} defined by $f_{n}(x)=\frac{x^{2 n}}{n+x^{2 n}}$ converges uniformly. Explain the reasons supporting your answer.

Problem 2

Show that if the sequence of numbers $\left(a_{n}\right)_{n=1}^{\infty}$ satisfies $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$, then the series $\sum_{n=1}^{\infty} a_{n} \cos (n x)$ converges uniformly on $[0,2 \pi]$. This means, the partial sums

$$
s_{N}(x)=\sum_{n=1}^{N} a_{n} \cos (n x)
$$

define a sequence of functions $\left\{s_{N}\right\}_{N=1}^{\infty}$ that converges uniformly on [$\left.0,2 \pi\right]$. Hint: First show that the sequence is Cauchy with respect to $\|\cdot\|_{\infty}$.

Problem 3

If $\mathrm{f} \in \mathrm{C}([0,1])$ and $1 \leq \mathrm{r} \leq \mathrm{s}<\infty$, show that $\|f\|_{1} \leq\|f\|_{r} \leq\|f\|_{s} \leq\|f\|_{\infty}$. Hint: Use Hölder's inequality with $g(x)=1$ and exponent $p=s / r$. Hence, show that if $\left(f_{n}\right)_{n=1}^{\infty}$ in $C([0,1])$ converges uniformly to $f \in C([0,1])$, then the sequence also converges with respect to the norm $\|\cdot\|_{p}$ for any $1 \leq p<\infty$.

Problem 4

Prove that the family $\mathcal{F}=\left\{\mathrm{f}_{\mathrm{n}}: \mathrm{f}_{\mathrm{n}}(\mathrm{x})=\sin (\mathrm{nx}), \mathrm{n} \in \mathbb{N}, \mathrm{x} \in[0, \pi]\right\}$ is not an equicontinuous family in $C([0, \pi])$.

