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Assignment 2, due Thursday, January 30, 8:30am
Please staple this cover page to your homework. Circle your course number, 4332 or 6313. Whenasked to prove something, make a careful step-by-step argument. You can quote anything we coveredin class in support of your reasoning.
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Problem 2Let
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We wish to find the closure of this set.
a. Show that the closure of F in C([0, 1]) contains all functions with Lipschitz constant at most

1 and the property f(0) = 0. Hint: For any such Lipschitz-continuous function f, construct asequence with elements f
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holds for any 0  k  2

n. It may be useful to first interpolate �
1- 1
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f with a piecewise linear,continuous function that is not in F and then modify it to make it continuously differentiable.

b. Show that if f has Lipschitz constant > 1, or is not Lipschitz continuous, then it is not in theclosure of F . Hint: Use an indirect proof and the Mean Value Theorem.
Problem 3Let K be a compact subset of Rn and F an equicontinuous family of functions in C(K), where K iscompact. If for each x 2 K, sup
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< 1, prove that sup{kfk1 : f 2 F } < 1. Hint: Useequicontinuity to establish the bound sup{|f(x)| : f 2 F , x 2 B
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to derive a contradiction.


