MATH 4332/6313
Introduction to Real Analysis
Spring 2020

First name: \qquad Last name: \qquad Points:

Assignment 2, due Thursday, January 30, 8:30am

Please staple this cover page to your homework. Circle your course number, 4332 or 6313 . When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let c_{0} be the space containing each sequence $x=\left(x_{n}\right)_{n=1}^{\infty}$ with $\lim _{n \rightarrow \infty} x_{n}=0$, equipped with the norm $\|x\|_{\infty}=\sup _{n}\left|x_{n}\right|$. Show that the closed unit ball $\overline{\mathrm{B}}_{1}(0)$ in \mathfrak{c}_{0} is not compact.

Problem 2

Let

$$
\mathcal{F}=\left\{g \in C([0,1]): \text { there is } f \in C([0,1]),\|f\|_{\infty} \leq 1 \text { with } g(x)=\int_{0}^{x} f(t) d t \text { for any } x \in[0,1]\right\}
$$

We wish to find the closure of this set.
a. Show that the closure of \mathcal{F} in $\mathrm{C}([0,1])$ contains all functions with Lipschitz constant at most 1 and the property $f(0)=0$. Hint: For any such Lipschitz-continuous function f, construct a sequence with elements $f_{n} \in \mathcal{F}$ such that

$$
f_{n}\left(2^{-n} k\right)=\left(1-\frac{1}{n+1}\right) f\left(2^{-n} k\right)
$$

holds for any $0 \leq k \leq 2^{n}$. It may be useful to first interpolate $\left(1-\frac{1}{n+1}\right)$ f with a piecewise linear, continuous function that is not in \mathcal{F} and then modify it to make it continuously differentiable.
b. Show that if f has Lipschitz constant >1, or is not Lipschitz continuous, then it is not in the closure of \mathcal{F}. Hint: Use an indirect proof and the Mean Value Theorem.

Problem 3

Let K be a compact subset of \mathbb{R}^{n} and \mathcal{F} an equicontinuous family of functions in $C(K)$, where K is compact. If for each $x \in K$, $\sup _{f \in \mathcal{F}}|f(x)|=M_{x}<\infty$, prove that $\sup \left\{\|f\|_{\infty}: f \in \mathcal{F}\right\}<\infty$. Hint: Use equicontinuity to establish the bound $\sup \left\{|f(x)|: f \in \mathcal{F}, x \in B_{\mathcal{\delta}}(a)\right\} \leq M_{a}+1$ for some fixed $a \in K$. Given $\left|f_{n}\left(x_{n}\right)\right| \rightarrow \infty$ for some sequences of $f_{n} \in \mathcal{F}$ and $x_{n} \in K$, extract a convergent subsequence of $\left(x_{n}\right)_{n=1}^{\infty}$ to derive a contradiction.

