Math 4332/6313 Introduction to Real Analysis Spring 2020

First name: _____ Last name: _____ Points:

Assignment 3, due Thursday, February 6, 8:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class or in the preceding term in support of your reasoning.

Problem 1

Show that every open set A in a metric space (X, d) is the union of closed sets.

Problem 2

Let X = C([0, 1]) be the space of continuous real-valued functions on [0, 1] with the max-metric

$$d_{\infty}(f,g) = \max\{|f(t) - g(t)| : 0 \le t \le 1\}.$$

Prove that the set $P = \{f \in C([0,1]) : f(t) \ge 0 \text{ for all } 0 \le t \le 1\}$ is closed.

Problem 3

Let (X, d) be a metric space and $A \subset X$. The closure \overline{A} of the set A is defined as the set of all $p \in X$ for which there is a sequence $(p_n)_{n \in \mathbb{N}}$ with $p_n \in A$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} p_n = p$. Show that \overline{A} is closed and show that if C is a closed set with $A \subset C$, then $\overline{A} \subset C$. Informally, this could be stated as " \overline{A} is the smallest closed set containing A".

Problem 4

Let (X, d) be a metric space, $Y \subset X$ and consider the metric space (Y, d). Show that every open set U in Y has the form $U = V \cap Y$ for an open set V in X. Hint: Show this first for open balls.