1. Let \((X, d)\) be \(X = (0, \infty)\) with usual metric from \(\mathbb{R}\) and
\(Y = X\), \(f : X \to Y\), \(f(x) = \frac{1}{x}\),
then \(f\) is cont., but \((x_n)_{n=1}^{\infty}\)
given by \(x_n = \frac{1}{n}\) is Cauchy
and \((f(x_n))_{n=1}^{\infty}\) has \(f(x_n) = \frac{1}{n} \to 0\)
so it is not Cauchy because unbounded.

2. a. We show \(x \in f(A) \Rightarrow x \in f(\overline{A})\).
If \(x \in f(A)\), then there is \(z \in A\),
\(x = f(z)\). Thus, there is \((z_n)_{n=1}^{\infty}\), \(z_n \in A\)
for each \(n \in \mathbb{N}\) and \(z_n \to z\).
By continuity, \(f(z_n) \to f(z) = x\),
so \(x \in \{f(z_n) : n \in \mathbb{N}\} \subset \overline{f(A)}\).

b. Let \(X = A = (0, 1)\), \(Y = \overline{\mathbb{R}}\)
\[f(x) = \frac{1}{x}, \quad \text{then} \]
\[f(\overline{A}) = f(A) = (1, \infty) \]

but
\[\overline{f(A)} = (1, \infty) = [1, \infty) \]

4. Let \(\delta = \varepsilon^2 \). If \(x, y \geq 0, \ |x - y| < \delta \), \(\text{WLOG, } x \geq y \), let \(x = y + s \), then \(s < \delta \). From \(\sqrt{a+b} \leq \sqrt{a} + \sqrt{b} \)

letting \(a = y, b = s \) we get
\[
\sqrt{x} - \sqrt{y} = \sqrt{y+s} - \sqrt{y} \leq \sqrt{s}
\]
\[
< \sqrt{\delta} = \varepsilon
\]

hence \(f(x) = \sqrt{x} \) is uniformly cont.

3. If \(g \) is inverse function, so \(g(y) = f^{-1}(xg(y)) \)
then for continuity it is sufficient if
\(g^{-1}(C) \) is closed for any closed set \(C \subset X \), however, \(g^{-1}(C) = f(C) \).

Since \(X \) is compact, \(C \subset X \) ad \(C \) closed implies \(C \) compact, so \(f(C) \) is compact/closed. Thus, \(g \) is continuous.
5. Assume f is cont., but not uniformly so.

Thus, there is $\varepsilon > 0$ for which no $\delta > 0$ works uniformly, so there are x_δ, y_δ with $d(x_\delta, y_\delta) < \delta$ but $f(f(x_\delta), f(y_\delta)) \geq \varepsilon$.

Consider $\delta_n = \frac{1}{n}$ and correspondingly $(x_n)_{n=1}^\infty$, $(y_n)_{n=1}^\infty$.

Choose conv. subsequ. by compactness of X, $x_{n_j} \to x$.

Then, from $d(x_{n_j}, y_{n_j}) \to 0$,

$y_{n_j} \to x$. However, then

$z_j = \begin{cases} x_{n_j} \ & \text{if } j \text{ odd} \\ y_{n_j/2} \ & \text{if } j \text{ even} \end{cases}$

has property that $z_j \to x$ but $f(f(z_{j+1}), f(z_j)) \geq \varepsilon$

for j even, because then $z_{j+1} = x_{n_j/2}$,

$z_j = y_{n_j/2}$, so $(f(z_j))_{j=1}^\infty$ does not converge, contradicting continuity of f.

Thus, f is uniformly cont.