Assignment 7, due Thursday, April 2, 8:30am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1
Show that \(f(x) = \sin(x) \) is not a contraction mapping on \([-1, 1]\).

Problem 2
Let \(f(x) = \frac{x}{2} + \frac{1}{x} \). Use some basic calculus to show that \(f \) maps \([1, 2]\) into \([1, 2]\), and use the mean value theorem to show that it is a contraction mapping. What is the value of the unique fixed point \(x^* \)? If you choose \(x_0 = \frac{3}{2} \) as your starting value, estimate \(|x^* - x_n| \) for \(n \in \mathbb{N} \) with the help of the distance bound in the contraction mapping theorem.

Problem 3
Let \(f(x) = x^2 - 5 \). Show that \(f \) has a root \(x^* \) somewhere in the interval \([2, 3]\). Calculate Newton’s \(g(x) \) and prove that \(g \) maps \([2, 3]\) into \([2, 3]\), with \(g'(x) \leq \frac{1}{2} \) for \(x \in [2, 3] \). Prove that if we perform Newton’s method with \(x_0 = 2 \), then \(|x_n - x^*| \leq \frac{1}{2^n} \).

Problem 4
Let \(f(x) = x - \cos(x) \) so if \(x^* \) is a root for \(f \), then \(\cos(x^*) = x^* \). Compute Newton’s \(g(x) \) and find concrete numbers \(a \) and \(b \) with \(0 \leq a \leq b \leq 1 \) such that \(g \) maps \([a, b]\) into \([a, b]\) and it is a contraction mapping. How does the Lipschitz constant of \(g \) compare with the one we had in class when we discussed the fixed point for \(\cos x \)?

Problem 5
Let \(f(x) = x^3 - 2 \). Explain why \(x^* = 2^{1/3} \) is the unique (real) root of \(f \). Show that \(1.25 < 2^{1/3} < 1.26 \). Use Newton’s (improved) method to compute \(2^{1/3} \) to eight decimal places (8 correct digits following the decimal point), starting from \(x_0 = 1.25 \). Using a calculator or a software package for computations is encouraged, however only basic arithmetic is allowed.