Practice Exam 1 – Math 4332/6313 February, 2020

First name: _____ Last name: _____ Last 4 digits student ID: _____

1 True-False Problems

Put a circle around T beside each statement that is true, and a circle around F beside each statement that is false.

Throughout (X, d) denotes an arbitrary metric space.

- T / F For $r > 0, p \in X$ the set $B_r(p)$ is never a closed set.
- T / F If $C \subseteq X$ has the property that every sequence has a subsequence that converges to a point in C, then C is closed.
- T / F If $f: X \to Y$ is a function, (X, d) is the discrete metric space and (Y, ρ) is any metric space then f is continuous.
- T / F If $K \subseteq X$ has the property that every convergent sequence in K is bounded, then K is compact.
- T / F If C is closed and U is open, then $C \cup U'$ is closed.
- T / F A closed and bounded subset of a metric space is compact.

In the following problems, you may quote statements from class or homework to simplify your answers.

2 Problem

Let (X, d) be a metric space and K_1 , K_2 compact subsets of X. Prove that $K = K_1 \cap K_2$ is compact.

Let X = C([0, 1]), equipped with the metric d_{∞} , and $K \subset X$ given by

 $K = \{f : [0,t] \to \mathbb{R}, f(0) = 0 \text{ and } f \text{ is } L\text{-Lipschitz continuous with constant } L \leq 1\}.$ Explain why K is compact.

Let (X, d) be a metric space and $A \subset X$ be totally bounded. Show that the closure \overline{A} is totally bounded.

Let ρ be the discrete metric on \mathbb{R} and d be the usual metric on \mathbb{R} . Show that the function f(x) = x from (\mathbb{R}, ρ) to (\mathbb{R}, d) is continuous and one-to-one but that the inverse mapping f^{-1} is not continuous.

Let (K, d) be a compact metric space and f_1 , f_2 (uniformly) continuous, real-valued functions on K. Prove that $f_1f_2 : x \mapsto f_1(x)f_2(x)$ is uniformly continuous on K.

Prove that if \mathbb{R} is equipped with the usual metric d, then Y = [0, 1] and d form the complete metric space ([0, 1], d).

[empty page]