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1. (30 points) Let Vp be the sub-space of L*([—1,]) spanned by the set of functions
{91, 92}, where | ‘
g1 (.’L‘) =1

and ,
g2 (:Z’J) =x.

(a) (10 points) Is {g1,92} an orthonormal basis for 57 Compute all the relevant
quantities to explain your answer.
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- (b) (10 points) Let

]38, —-1/2<z<0
f(x)—{l, 0<z<1/2.

Express the orthogonal projection fof f onto V; in terms of a linear combination
of g1 and go.
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(c) (5 points) Compute the value f(z) for z € [-1/2,1/2].

- (d) (5 points) Sketch the graphs of f and of f from the preceding part on the interval
[~1/2,1/2). You can put them in the same coordinate system.
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2. (20 points) Let V be the vector space of real-valued polynomials of degree at most two,
V= {p(ﬂ:) =Cy+ T+ szza Cp,C1,C2 € R} )
and define for two functions p,g € V' the “dot” product
o1
{(p, @)) = p(0)¢(0) +#'(0)¢'(0) + 7#"(0)¢"(0) -

(a) (8 poinfs) Determine all p € V' for which ({(p, p)) = 0.

(b) (12 points) Is this dot product an inner product? If this is true, explain briefly
why. If not, explain which of the properties of inner products is violated.
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3. (20 points) Let a sequence of functions {fn}rZ; on [0, 1] be defined by

0, else .

f (x) _ {sin(m:), 0<z<7/n

(a) (10 points) Show that fa— 0in L2([0,1]) as n — oo.

(b) (10‘points) Does frn — 0 uniformly on [0,1] as n — co? Why/why not?
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4. (30 points) Consider the function f(z) = cos(z/2) on z € [-, ).

(a) (15 points) Find the Fourier coefficients a; and by (real form of the Fourier series)
for f. Simplify as much as possible, ehmlnatmg any trigonometric functions in
your answer, if you have time.
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(b) (5 points) Sketch three periods of the function to which the Fourier series con-
verges.

(c) (10 points) Is the Fourier series uniformly convergent to f on the interval [—m, m)7
Quote an appropriate theorem and use it to justify your answer.
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5. (20 points) Let g(z) = zsin(z) on —m <z < 7.

(2) (10 points) For which points z € [~,7) does the Fourier series converge to g(z)?
Justify your answer by referring to conditions for pointwise convergence.

(b) (10 points) Assuming that you have (correctly) computed the partial sum of the
Fourier series for g as .

N
1 2
Sn(z)=1- 5 cos(z) — E T cos(km) cos(kz),
k=2 '

find the value for the series '
P
—~ k 1

by choosing an appropriate z for which the Fourier series converges.
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Trig formulas
sin(a £ ) = sin(«) cos(f) = cos(e) sin(f)
cos(a =+ ) = cos(a) cos(B) F sin(e) sin(F)

cos(2a)
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