Math 4397/6397, Fall 2009 Problem Set 2, due Thursday, Sep 10

- Problem 1. Using the rules of expectations prove that $Var(X) = E[X^2] E[X]^2$ starting from the definition $Var(X) = E[(X \mu)^2]$.
- Problem 2. Suppose that a random variable X has a density of the form

$$f(x) = \begin{cases} cx^k & , 0 \le x \le 1\\ 0 & , \text{ else} \end{cases}$$

for some constant $k \ge 0$.

a. Find c.

- b. Derive the distribution function for the density f.
- c. Derive a formula for the p^{th} quantile from f.
- d. Let $0 \le a < b \le 1$. Compute P(a < X < b).
- e. Compute the mean and the variance of X.
- Problem 3. Let $g(x) = sf_1(x) + (1 s)f_2(x)$ where $0 \le s \le 1$ and the densities f_1 and f_2 are associated with means and variances μ_1 , σ_1^2 and μ_2 , σ_2^2 , respectively. Show that g is a valid density, and compute its associated mean and variance.
- Problem 4. You are playing a game with a friend where you flip a coin and if it comes up heads you give him a dollar and if it comes up tails she gives you a dollar. You play the game ten times.
 - a. What is the expected total earnings for you? (Show your work; state your assumptions.)
 - b. What is the variance of your total earnings? (Show your work; state your assumptions.)
 - c. Suppose that the die is biased and you have a .4 chance of winning for each flip. repeat the calculations in parts a and b
- Problem 5. Assume that swimming in the bayou is associated with 1/500 probability of getting an infection. How many times would an uninfected person have to have repeat a swim in the bayou to have a 50% probability of obtaining an infection? State the assumptions of your calculations.