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1 Set theory

AR
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The symbol C means “is a subset of”, and € means “is an element of”.

The sample space, €2, is the space gf all possible outcomes of an experiment.

An event, say A C €, is a subset of (.

The union of two events, A U B, is the collection of elements that are in A, B or both.

The intersection of two events, A N B, is the collection of elements that are in both A and
B.

The complement of an event, say A or A is all of the elements of Q that are not in A.
The null or empty set is denoted 0.
Two sets are disjoint or mutually exclusive if their intersection is empty, AN B = {.

DeMorgan’s laws state that (AU B)¢ = A° B° and (AN B)¢= A°U B-.

2 Probability essentials

1.

o &~ N

A probability measure, say P, is a function on the collection of events to [0, 1] so that the
following three properties hold:

a. P(Q) =1.
b. If A C Q then P(A) > 0.
c. If a sequence of events A;, Ay ..., is disjoint then P(UR,4;) =3 oo; P(A)).

P(A?) =1— P(A).
The odds of an event, A, are P(A)/(1 — P(A)) = P(A)/P(A°).
P(AUB) = P(A) + P(B) — P(AN B).

If A C B then P(A) < P(B).
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11.
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13.

14.

15.

. Two events A and B are independent if P(AN B) = P(A)P(B). A collection of events,

{A;}7,, are mutually independent if for any subset J C {1,2,...n}, we have P(Nics4;) =
[ ;s P(As). If this holds for all sets J with size |J| = 2 then we say the collection is pairwise
independent.

Pairwise independence of a collection of events does not imply mutually independence, though
the reverse is true.

Given that P(B) > 0, the conditional probability of A given that B has occurred is P(A|B) =
P(AN B)/P(B).

. Two events A and B are independent if P(A|B) = P(A).

The law of total probability states that if A; are a collection of mutually exclusive events
so that Q = UL, A;, then P(C) =3""_, P(C|A;)P(A;) for any event C.

Bayes’s rule states that if A; are a collection of mutually exclusive events so that 2 = U2, A;,
then

o _ _P(CIA)P(4)
P(A;|C) = =5 J I
WO =S Peiapay
for any set C (with positive probability). Notice A and A° are disjoint and A U A¢ = ) so

that we have
P(B|A)P(A)

(B|A)P(A) + P(B|A%)P(A°)’

P(A|B) = >

The sensitivity of a diagnostic test is defined to be P(+|D) where + (—) is the event of a
positive (negative) test result and D is the event that a subject has the disease in question.
The specificity of a diagnostic test is P(—|D¢).

Bayes's rule yields that

~ P(+|D)P(D)
PIOH) = BDIR(D) + P+ IDIFD
and
el_y _ P(=|D°)P(D°)
PD*-) = 515 D9P(D<) + P(—|D)P(D)’

The diagnostic likelihood ratio of a positive test result is P(+|D)/P(+|D¢) = sensitivity/(1—
specificity). The likelihood ratio of a negative test result is P(—|D)/P(—|D¢) = 1-sensitivity/specificity.

The odds of disease after a positive test are related to the odds of disease before the test by

the relation
P(D|+) _ P(+|D) P(D)

P(Del+)  P(+|D°) P(D°)
That is, the posterior odds equal the prior odds times the likelihood ratio. Correspondingly,
P(D?|-) _ P(=|D°) P(D°)

P(D|-) ~ P(=|D) P(D)




3 Random variables

1.

A random variable is a function from {2 to the real numbers. A random variable is a random
number that is the result of an experifent governed by a probability distribution.

A Bernoulli random variable is one that takes the value 1 with probability p and 0 with
probability (1 —p). Thatis, P(X =1)=pand P(X =0)=1—p.

. A probability mass function (pmf) is a function that yields the various probabilities asso-

ciated with a random variable. For example, the probability mass function for a Bernoulli
random variable is f(z) = p*(1 — p)}~* for z = 0, 1 as this yields p when z =1 and (1 —p)
when z = 0. ‘ ' ST

. The expected value or (population) mean of a discrete random variable, X, with pmf f(z)

IS

p=EX] =Y sf()

x

The mean of a Bernoulli variable is then 1f(1) + 0£(0) = p.
The variance of any random variable, X, (discrete or continuous) is
o® = E [(X — w)?] = E[X?] - E[X]".

The latter formula being the most convenient for computation. The variance of a Bernoulli
random variable is p(1 — p).

The (population) standard deviation, o, is the square root of the variance.

. Chebyshev’s inequality states that for any random variable P(|X — u| > Ko) < 1/K>.

This yields a way to interpret standard deviations.

. A binomial random variable, X, is obtained as the sum of n Bernoulli random variables and

has pmf
P =)= (§ )#a-ar

Binomial random variables have expected value np and variance np(1 — p).

4 Continuous random variables

1.

Continuous random variables take values on the continuum of the real numbers or even
higher-dimensional real vector spaces.

2. A continuous random variable X has a probability density function (pdf) f if for all & < b,

b
Pla<X <b)= / f(@)de.
a
To be a pdf, a function must be positive and integrate to 1. That is, ffooof(x)da: =]

3
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If b is a positive function such that Joo h(z)dz < oo then f(z) = h(z)/ [Z2 h(z)dz is a
valid density. Therefore, if we only know a density up to a constant of proportionality, then
we can figure out the exact density.

-

The expected value, or mean, of a continuous random variable, X, with pdf f, is

J= BX] = /_ ()

. The variance is 0% = E[(X — u)?] = E[X?] — E[X]%.

. The distribution function, say F’, corresponding to a random variable X with pdf, f, is

P(X <z) / f(t)
(Note the common convention that X is used when describing an unobserved random variable

while z is for specific values.)

The p** quantile (for 0 < p < 1), say X,, of a distribution function, say F, is the point so
that F(X,) = p. For example, the .025™ quantile of the standard normal distribution is -1.96.

5 Properties of expected values and variances

The following properties hold for all expected values (discrete or continuous)

1.
2.

0w

Expected values are additive: E[X +Y] = E[X]+ E[Y].

Multiplicative and additive constants can be pulled out of expected values E[cX] = cE[X]
and E[c+ X] = c+ E[X].

For independent random variables, X and Y, E[XY] = E[X]E[Y].
In general, E[h(X)] # h(E[X]).

5. Variances are additive for sums of independent variables Var(X +Y) = Var(X) + Var(Y).

Multiplicative constants are squared when pulled out of variances Var(cX) = ¢*Var(X).

Additive constants do not change variances: Var(c+ X) = Var(X).

6 The normal distribution

1.

The normal or Gaussian density, often also called “bell curve”, is a very common den-
sity. It is specified by its mean, u, and variance, o2. The density is given by f(z) =
(270?) Y2 exp{—(z — p)?/20?}. We write X <~ N(u,0?) to denote that X is normally
distributed with mean g and variance o2.
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. If Z is standard normal then X = pu + Zo is normal with mean p and variance o~.

. The standard normal density, labeled @, corresponds to a normal density with mean p =0

and variance ¢? = 1.
¢(2) = (2m) 712 exp{—2*/2}.

The standard normal distribution function is usually labeled ®.

. If £ is the pdf for a N(u, 02) random variable, X, then note that f(z) = ¢{(z — u)/o}/o.

Correspondingly, if F'is the associated distribution function for X, then F(z) = ®{(z—p)/c}.

If X is normally distributed with mean p and variance ¢ then the random variable Z =
(X — p)/o is standard normally distributed. Taking a random variable subtracting its mean
and dividing by its standard deviation is called “standardizing” a random variable.

2

. Approximately 68%, 95% and 99% of the mass of any normal distribution lies within 1, 2 and

3 (respectively) standard deviations from the mean.

Henceforth, the quantity z, refers to the o* quantile of the standard normal distribution.
290, Z95: Zo7s and zgg are 1.28, 1.645, 1.96 and 2.32, respectively. "

Sums and means of normal random variables are normal (regardless of whether or not they
are independent). You can use the rules for expectations and variances to figure out 4 and o.

The sample standard deviation of iid normal random variables, appropriated normalized, is a
Chi-squared random variable (see below).

Sample means and variances

Throughout this section let X; be a collection of iid random variables with mean p and variance

o”.
1.
2.

We say random variables are iid if they are independent and identically distributed.

For random variables, X;, the sample mean is X = S Xi/n.

E[X] = p = E[X;] (does not require the independence or constant variance).

If the X; are iid with variance o2 then Var(X) = Var(X;)/n = o?/n.

. The sample variance is defined to be

Z?:l (Xi . X)2 ]

n—1

52 =

S (X, —X)2P=37 . X? —nX?is a shortcut formula for the numerator.
=1 i=1""1

o/+/n is called the standard error of X. The estimated standard error of X is S/+/n. Do
not confuse dividing by this /n with dividing by n — 1 in the calculation of S2.

5



12.

An estimator is unbiased if its expected value equals the parameter it is estimating.

. E[S?] = 62, which is why we divide by n — 1 instead of n. That is, S is unbiased. However,

dividing by n— 1 rather than n does increase the variance of this estimator slightly, Var($2?) >
Var((n — 1)S%/n).

. If the X; are normally distributed with mean p and variance o2, then X is normally distributed

with mean p and variance o2 /n.

. The Central Limit Theorem. If the X; are iid with mean u and (finite) variance o2 then

'_X_/“‘
NG

will limit to a standard normal distribution. The result is true for small sample sizes, if the X;
iid normally distributed.

Z

If we replace o with S; that is,

X —p

S/’

then Z still limits to a standard normal. If the X are iid normally distributed, then Z follows
the Students ¢ distribution for small n.

8 Confidence intervals for a mean using the CLT

1.

Using the CLT, we know that

X—p
— < <
P( Zl—a/2 = S/\/ﬁ_

for large n. Solving the inequalities for 1, we calculated that in repeated sampling, the interval

Zl_a/2> S

- S
X * 21002

Vn
will contain u approximately 100(1 — )% of the time.

Prior to conducting a study, you can fix the margin of error (half width), say 0, of the interval
by setting n = (Z1-a/20/6)?. Round up. Requires an estimate of o.

0 Confidence intervals for a variance and t confidence in-

tervals

. : . . . —1)82
1. If X; are iid normal random variables with mean p.and variance o2 then (—”—o_lzi follows what

is called a Chi-squared distribution with n — 1 degrees of freedom.



10.

Using the previous item, we know that
n—1)5%

o
P(Xi-—l,aﬂg -

-——JT_ < Xi—l,l—a/2> =l-q

where x2_, , denotes the o quantile of the Chi-squared distribution. Solving these inequal-

ities for o2 yields 7
Fn—ny m—1w1

2 ? 2
Xn—l,l—a/Q Xn—l,a/Z

is a 100(1 — )% confidence interval for 0. Recall this assumes that the X; are iid Gaussian
random variables.

. The fact that (n—1)5% ~ Gamma((n—1)/2, 20?) can be used to create a likelihood function

for o or 2.
Chi-squared confidence intervals and the likelihood function depend heavily on the normality
assumption.

If Z is standard normal and X is and independent Chi-squared with df degrees of freedom
then \/)% follows what is called a Student’s ¢ distribution with df degrees of freedom.
The Student’s ¢ density looks like a normal density with heavier tails (so it looks more squashed
down).

By the previous item, if the X; are iid N(u, 0%) then
_X—up
NG

follows a Student’s ¢ distribution with (n — 1) degrees of freedom. Therefore if ¢,_1,4 is the
a? quantile of the Student’s ¢ distribution then

Z

> S
X itn—l,l—a/2\/ﬁ
is a 100(1 — )% confidence interval for L.

The Student’s t confidence interval assumes normality of the X;. However, the ¢ distribution
has quite heavy tails and so the interval is conservative and works well in many situations.

For large sample sizes, the Student’s t and CLT based intervals are nearly the same because
the Student’s ¢ quantiles become more and more like standard normal quantiles as n increases.

For small sample sizes, it is difficult to diagnose normality/lack of normality. Regardless, the
robust t interval should be your default option.



10 Summarizing and displaying data

1.

4.

The p** empirical quantile of a data set is that point so that 100p% of the data lies below it.
The sample median is the .50** quanfile. Empirical quantiles estimate population quantiles.

A boxplot plots a box with a centerline at the sample median and the box edges at the lower
and upper quartiles. “Whiskers” extend to the largest data point that is within 1.5 of the IQR
(inter quartile range). Side by side boxplots are useful to compare groups.

A quantile-quantile (qq) plot, plots empirical quantiles versus the theoretical quantiles. For
normal random variables with mean 4 and variance o2, let X, be the p* quantile. Then,
Xp = p+Zyo. Therefore plotting the empirical quantiles versus the standard normal quantiles
can be used to diagnose non-normality (a normal qq plot). Any deviation from a straight
line indicates non-normality.

Histograms and stem and leaf plots give information about the density.

11 Hypothesis testing for a single mean

1.
2.

The null, or status quo, hypothesis is labeled Hy, the alternative H, or Hy or H; ...

A type | error occurs when we falsely reject the null hypothesis. The probability of a type |
error is usually labeled a.

A type Il error occurs when we falsely fail to reject the null hypothesis. A type Il error is
usually labeled .

A Power is the probability that we correctly reject the null hypothesis, 1 — 5.

The Z test for Hy : = po versus Hy @ p < pg or Hy @ o 5 pg or Hs @y > pg constructs a

test statistic T'S = );/_ﬁ and rejects the null hypothesis when

Hl TS § —Z1—a
Hy TS| > 2102
H3 TS Z Zl—a

respectively.

. The Z test requires the assumptions of the CLT and for n to be large enough for it to apply.

If n is small, then a Student’s ¢ test is performed exactly in the same way, with the normal
quantiles replaced by the appropriate Student’s ¢ quantiles and n — 1 df.

. Tests define confidence intervals by considering the collection of values of g for which you

fail to reject a two sided test. This yields exactly the £ and z confidence intervals respectively.

Conversely, confidence intervals define tests by the rule where one rejects Hy if ug is not in
the confidence interval.
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11.

12.

13.

14.

15.

A p-value is the probability of getting evidence as extreme or more extreme than we actually
got under the null hypothesis. For Hz above, the p-value is calculated as P(Z > T'Spps|p =
t1o) where T'Syps is the observed value of our test statistic. To get the P-value for Hy, calculate
a one sided P-value and double it.

The p-value is also called the attained significance level. This is the smallest o value for
which we would have rejected the null hypothesis. Therefore, rejecting the null hypothesis if
a P-value is less than « is the same as performing the rejection region test.

The power of a Z test for Hj is given by the formula (know how this is obtained)

Zi s > ).
P(TS> 1— I,LL ,Lbl) P(Z 0‘/\/_ -|—Z1 )

Notice that power reqwred a value for y;, the value under the null hypothesis. Correspondlngly

for H; we have
P (Z <Ho B _ 7 a) :
0/\/_

For H,, the power is approximately the appropriate one sided power using /2.

Some facts about power.

a. Power goes up as a goes down.

b. Power of a one sided test is greater than the power of the associated two sided test.
c. Power goes up as pu; gets further away from pg.

d. Power goes up as n goes up.

The power formula can be used to calculate the sample size. For example, using the power
formula for H;, setting Z;1_g = ‘?/\/“_1 A y|elds

(Zl ﬁ—l-Zl a>2 2
(po — p1)?

which gives the sample size to have power = 1 — 3. This formula applies for Hj also. For the
two sided test, Hs, replace o by /2.

Determinants of sample size.

a. n gets larger as o gets smaller.
b. n gets larger as the power you want gets larger.

c. n gets lager the closer p; is to .



12 Binomial confidence intervals

1.

Binomial distributions are used to.model proportions. If X ~ Binomial(n,p) then p = X/n
is a sample proportion. o ‘

. P has the following properties.

a. It is a sample mean of Bernoulli random variables.
b. It has expected value p.

c. It has variance p(1 — p)/n. Note that the largest value that p(1 — p) can take is 1/4 at
p=1/2. :
d. Z = —£=2__ follows a standard normal distribution for large n by the CLT.

A/ p(l-p)/n

. The Wald confidence interval for a binomial proportion is

Pt 21a2vD(1—p)/n.

13 The likelihood for a binomial parameter p

1.

The likelihood for a parameter is the probability density of a given outcome viewed as a
function of the parameter.

. The binomial likelihood for observed data z is proportional to p®(1 — p)*~%.

. The principle of maximum likelihood states that a good estimate of the parameter is the

one that makes the data that was actually observed most probable. That is, the principle of
maximum likelihood says that a good estimate of the parameter is the one that maximizes the
likelihood.

a. The maximum likelihood estimate for p is § = X/n.

b. The maximum likelihood estimate for y for iid N(u, 02) data is X. The maximum likelihood
estimate for o2 is (n — 1)5?/n (the biased sample variance).

. Likelihood ratios représent the relative evidence comparing one hypothesized value of the

parameter to another.

Likelihoods are usually plotted so that the maximum value (the value at the ML estimate) is
1. Where reference lines at 1/8 and 1/32 intersect the likelihood depict likelihood intervals.
Points lying within the 1/8 reference line, for example, are such that no other parameter value
is more than 8 times better supported given the data.

10



14 Group comparisons

1.

For group comparisons, make sure to differentiate whether or not the observations are paired
(or matched) versus independent. ] |

For paired comparisons for continuous data, one strategy is to calculate the differences and
use the methods for testing and performing hypotheses regarding a single mean. The resulting
tests and confidence intervals are called paired Student’s ¢ tests and intervals respectively.

For independent groups of iid variables, say X; and Y;, with a constant variance o across
groups

X—Y_(/'Lm_/vby')

1 1
SP N + Ny

7z =

limits to a standard normal random variable as both n, and n, get large. Here

g2 — (g — 1)53 + (ny - 1)55
P Ny + 1y — 2

is the pooled estimate of the variance. The quantities X, Sz, ng are the sample mean, sample
standard deviation and sample size for the X; and Y, S, and n, are defined analogously.

If the X; and Y; happen to be normal, then Z follows the Student's ¢ distribution with
ng + ny — 2 degrees of freedom. Therefore a (1 — a) X 100% confidence interval for p, — iy
is

>_ @ 1 1\
Y-X+ tnz+ny—2,l—oz/2sp (n— + n—) :
z y

. 2 /52 .
To test whether the variances of both groups are equal, we use that g;;gg follows what is
Yy oy

called the F distribution with n, —1 numerator degrees of freedom and n, —1 denominator
degrees of freedom. ’

. We test the hypothesis Hy : 02 = o2 versus either of Hy : 02 < o7, Hy : 02 # o7 and

z

Hs : 02 > 02 compare the statistic T'S = S7/53 to the F distribution. We reject H in favor
of ‘

Hl if T'S < fnz—l,n-y—l,a:
Hy if TS < frg—1ny—1,0/2 OF TS > frp1ny—11-0/2,
Hs if TS > fn,—1n,-11-a-

The F distribution satisfies the property that f,—1.,~1,0 = (fa,~1,ns—1,1-a) - S0, if Hy is
true, then acceptance or rejection is unaffected, whether we put S2 on the top or bottom.

Using the fact that

. 52/02
l—-a=P <Fnz-—l,n 102 < == S Frpcimy—11-0/2
v 52 /02 4

11
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11.

12.

13.

14.

. . o2 2 52
we can calculate a confidence interval for o5 as [Fnz—l,ny—l,a%gyan—l,ny—lyl—aﬂfq%' . Of
. . o2 . 32 S2
course, the confidence interval forw—g is [Fny_l,nm_l,as—g,Fny_l,nz_l,l_a/zh—g% .

- - .

F tests heavily depend on the normality assumption.

If we conclude that the variances of both groups are unequal, then we use that the statistic

X_Y—(Nac_/v‘y)

2
S5
Nz Ny

follows a standard normal distribution for large n, and n,. It follows an approximate Students
T distribution if the X; and Y; are normally distributed. The degrees of freedom are given
below. . ’

For testing Hy : piz = py in the event where there is evidence to suggest that o, # oy, the

test statistic 7S = *;‘Ysz follows an approximate Student’s T' distribution under the null
fn g

hypothesis when X; and Y; are normally distributed. The degrees of freedom are approximated

it (52/ny + 52/m)?
(STn (e D) + (2 ngP Ty = 1)

The power for a Z test of Hy : pg = piy versus Hz @ piy > 1y, is given by

ne Ty

while for Hy : pp < py it is

Pl Z<L 70—

Sample size calculation assuming n, =n, =n

(Z1—a+ Z1-p)* (02 4 07)
(e — piy)?

Note that under unequal variances

12



15.

The statistic _ _
Y — X — (/uy - Mw)

1/2
@y
Ng Ny

approximately follows Gosset's ¢ distribution with degrees of freedom equal to

2 (82/ny + §2/ny)
(2) /e -1+ () /my~ 1)

15 Comparing two binomials

1

2.

. To estimate p; —p, we can use p;—po, which has an estimated standard error \/

Let X ~ Binomial(n;,p;) and p; = X/ng
Let Y ~ Binomial(ng, p2) and po = Y/ng

We use the following notation

ny=X|np=m—-X|n
NQ1=Y n22=n2—Y Mg
Ny n-

. We test Hy : p1 = ps versus Hj : p; # pg, Hy : p1 > pa, H3 : p1 < pa with the statistic

TS — D1 — D2
A= D) + %)

where p = Tffi}:z is the estimate of the common proportion under the null hypothesis. This

statistic is approximately normally distributed for large n; and no.

P1(1—p1) + P2(1—p2)
ni ng !

and construct a Wald confidence interval:

N A~ D 1 — 9 o~ 1 _ A~
pl—pQ-_—tzl_a/g\/pl( pl) +p2( p?) .
. ny : No

An easy fix to improve the performance of the Wald interval is to use f; = (X + 1)/(n1 +2)
nad pp = (Y +1)/(na + 2) instead of p; and ps.

. The relative risk is defined as p;/ps with estimate p; /ps.

. The standard error for the log relative risk'is

l—-p  1—po
SE.  sp=
log RR \/plnl N Dana

13
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11.

12.

13.
14.

15.

a. sfRZloe kR 45 ormally distributed for large ny and ns
SElog RR

b. For hypothesis testing, use the null estimate ofp

c. For intervals, use p; and ps in SFlggﬁR.' Exponentiate the interval to get one for the RR

. The odds ratio is defined as OR = 2/{=p)

p2/(1—p2)

An estimate of the odds ratio is OR = 21/(=P1) _ nunss

P2/(1—p2) n12n21
An estimated standard error for the odds ratio is SElog Gr = e e

711 ni12 n21 n22

For large sample sizes logggw follows a standard normal distribution. You can use this
log OR

to get a Wald confidence interval and perform hypothesis test for the OR.
Exponentiate to get a Cl for the odds ratio.
The odds ratio is invariant to transposing rows and columns

Taking logs for the RR and OR is done b/c it their finite sample distributions are often quite
skewed and convergence to normality is faster on the log scale.

16 The delta method

1.
2.

The delta method is a useful tool for obtaining asymptotic standard errors.
The delta method states the following. If
) — 0
=9 _ N,1)
SEy ,
then .
10 =76) _ xo,1)
F'(0)SEq
. The delta method is motivated by noting that when f is close to @ then
6) — f(8 5
$O =10 _, 45
0—0

so that

fé) -6 _8-0
F(OSE;  SE;

Therefore the asymptoticb standard error for f(8) is f’(é)SFg.

14



17 Chi squared testing for contingency tables

N

Use the notation from Section 15.

-

The chi-squared statistic is written as

O —E)?
e

the sum is taken over all four cells. The expected cell counts are calculated under the null
hypothesis.

. An easy computational form for this statistic is

n(nnnzz - n12n21)

N1+ M2+ N1 M2

. We reject Hy : p1 = po if the statistic is large. It is a two sided test. Compare to a .95%h

quantile of the Chi-squared distribution with 1 degree of freedom.

The chi-squared statistic is the square of the difference in proportions statistic with the common
p in the denominator.

The chi-squared statistic is unchanged when transposing the rows and columns.

The chi-squared statistic also applies if the sampling is multinomial instead of binomial. That
is if only the total sample size is fixed (and hence none of the margins).

In the multinomial case, the null hypothesis is that the row and column classifications are
independent.

18 Fisher’s exact test

Use the notation from Section 15.

. Fisher's exact test is “exact” because it guarantees the « rate, regardless of the sample size

Under the null hypothesis, the distribution OF X | X +7 is the so called hypergeometric
distribution. The PMF for the hypegeometric distribution is

PX=2|X+Y=2)= (?2 S;TZ)
(")

The possibly values for z. are max(0,z + n; — n) < z < min(z, ny).

This distribution can be simulated by taking n1 red balls and ns. white balls and randomly
allocating to two bins that can hold ny; and n.s balls respectively.

15



For a one sided hypothesis, you can perform Fisher's exact test by calculating the hypergeo-
metric probabilities for all tables that are as or more supportive of the alternative hypothesis.
Remember to constrain the margins. To obtain the two sided P-value, sum the probabilities
for all tables with a probability less than or equal to that of the observed table.

Like the chi-squared test, Fisher's exact test applies to binomial, multinomial or Poisson
sampling.

19 Chi-squared testing for binomial observations

1.

. The test statistic is

The chi-squared test can be used to test p; = ps = ... = p; for k binomial observations,
X; ~ Binomial(n;, p;).

_m)2 :
(—Q;—) where O are the observed counts (successes and failures) and
E are the estimated expected counts under the null hypothesis. This statistic is a chi-square
with k£ — 1 degrees of freedom.

. A followup test would compare the propdrtions individually, two at a time.

. The test can be generalized to multicategory settings where we would want to test whether

or not the distribution of the counts in each row are the same. This test would have (rows —
1)(cols — 1) degrees of freedom.

For multinomial sampling (only the overall sample size is constrained) a test of independence
of the row and column classifications can be done. If n;; are the observed counts in cell ¢, j,
then the expected counts are nin.;/n. (Here n;. refers to the i row total and n; refers
to the j™ column total). The resulting statistic has degrees of freedom (rows — 1){cols — 1).

The test statistic for independence and the test for equal distributions in each row are math-
ematically the same and follow a chi-squared distribution with (rows — 1)(cols — 1) degrees
of freedom. The only difference is in the intepretation of the test.

Exact tests of independence (generalizations of Fisher's exact test) can be performed using
Monte Carlo simulation.

. Goodness of fit testing tests whether or not a series of counts follow a specified distribution.

That is Hy : p1 = Do1, P2 = Poz, - - - » Pk = Por Where pg; are specified. The expected count for
cell 7 is m * po;. The resulting statistic has k£ — 1 degrees of freedom.

20 Multiple comparisons

1.

When conducting k hypothesis tests, the familywise error rate refers to the probability of
falsely rejecting the null hypothesis in any of the & tests.
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Bonferroni's inequality implies that the familywise error rate is no larger than ka where o is
the Type | error rate (applied to each test individually). Therefore a Bonferroni adjustment
uses the Type | error rate a* = afk for each test. Under this adjustment the familywise error
rate is no larger than a.

If there are a large number tests whos outcomes are independent (which is rarely the case),
then the Bonferroni bound on the family wise error rate is nearly attained.

The false discovery rate is defined as the proportion of tests that are falsely declared sngmf—
icant.

The Benjamini and Hochberg procedure to control the FDR follows as

i. Order your p-values so that p; < ... < pg
ii. Define ¢; = kp;/i
ili. Define F; = min(g;,...,q)

iv. Reject Hy for all 7 so that F; is less than the desired FDR. (Because the F; are increasing,
one need only find the largest 7 so that F; <FDR).

21 Non-parametric testing

1.

Non-parametric testing relaxes the assumptions of parametric tests. There are also referred
to as “distribution free” tests. Note that these tests are not “assumption free”.

For paired continuous data, consider taking the differences (as in the paired T-test); denote
these differences by D;. If the median difference is 0, then p = P(D; > 0) = .5; if the median
difference is greater than 0, then P(D; > 0) > .5, and so on. The sign test tests Hy : p = .5
versus the three alternative using the indicators of whether each D; is larger than 0. Let D,
be the total number of positive differences. Then. D is Binomial with success probability p.
All of the usual binomial procedures can then be used to carry out the tests. Instances where
D; = 0 are thrown out and the overall sample size reduced.

The sign test disregards a lot of information contained in the observations. The signed rank
test overcomes this to a large degree by also mcorporatlng the ranks of the observations.
The signed rank procedure is as follows

a. Take the paired differences

b. Take the absolute values of the differences

c. Rank these absolute values, throwing out the Os

d. Multiply the ranks by the sign of the difference (+1 for a positive difference and -1 for a
negative difference)

e. Calcuate the rank sum W, of the positive ranks
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. For small sample sizes, the distribution of W, under the null hypothesis can be computed

explicitly or by Monte-Carlo simulation. Critical values can also be obtained from tables. If
the alternative is that the median difference is larger than 0, then W should be large (hence
reject if it is larger than the critical value). Vice-versa for the median difference being smaller
than 0.

. A large sample test statistic can be constructed as follows

EW,)=n(n+1)/4
Var(Wi)=n(n+1)(2n+1)/24
TS ={W,— E(W.)}/Sd(W,) — Normal(0, 1)

. For unpaired data the relevant test is called the rank sum test.

. Procedure

(a) Discard the treatment labels
(b) Rank the observations
(c) Calculate the sum of the ranks in the first treatment
(d) Either
* calculate the asymptotic normal distrubtion of this statistic
* compare with the exact distribution under the null hypothesis

. Let W be the sum of the ranks for the first treatment (A)

Let n4 and np be the sample sizes
Then -

o E(W)=mna(n, + nb.—l— 1)/2
o Var(W) = nang(na +npg+1)/12
o TS ={W—-EW)}/SdW) — N(0,1)

This means, we can perform this test based on the Z-score T'S.
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