Last Time (8/30/12)

Gram-Schmidt: - set of linearly independent vectors can yield an orthonormal set that spans the space

Trace and Determinant: - definitions and properties

Eigenvalues and Eigenvectors - definitions, the characteristic polynomial, and how eigenvalues determine the trace and determinant

Similarity - definition, relation to characteristic polynomial, and diagonalizability

1 Further Review

1.2 Warm-up/Correction

1.2.11 **Remark.** Last time, we wrote that, as $\det(AA^{-1}) = \det(A)\det(A^{-1})$, and as $\det(AA^{-1}) = \det(I) = 1$, we have that if A is invertible then $\det(A) \neq 0$. We can also prove the converse using previous insights.

Suppose $\det(A) \neq 0$. Because $\det(A)$ is the product of the eigenvalues of A, we know that none of the eigenvalues of A can be zero. However, if A were not invertible, then we would have that $\ker(A) \neq \{0\}$, so for some $x \in \mathbb{C}^n$, $x \neq 0$, we have that $Ax = 0 = 0x$.

Then x is an eigenvector of A corresponding to eigenvalue zero. This is a contradiction, so it must be the case that A is invertible.
1.4 Similarity (cont’d)

1.4.20 Theorem. A matrix $A \in M_n$ is diagonalizable $\iff \exists$ a set of n linearly independent eigenvectors of A.

Proof. Given a diagonalizable matrix $A \in M_n$, let $S \in M_n$ be an invertible matrix such that $S^{-1}AS = D$, where $D \in M_n$ is diagonal. Left-multiplying by S gives us $AS = SD$. We write $S = [x_1 \ x_2 \ \ldots \ x_n]$, and note that by properties of left/right multiplication, we get

$$[Ax_1 \ Ax_2 \ \ldots \ Ax_n] = AS = SD = [d_{1,1}x_1 \ d_{2,2}x_2 \ \ldots \ d_{n,n}x_n],$$

where the $d_{k,k}$ are the diagonal entries of D. From this we see that each x_k is an eigenvector with corresponding eigenvalue $d_{k,k}$. Then by the invertibility of S, we know that it has full rank, so the x_k are linearly independent.

Conversely, suppose that there is a linearly independent set $\{x_1, x_2, \ldots, x_n\}$ of eigenvectors of A. Then we can form $S = [x_1 \ x_2 \ \ldots \ x_n]$. Then $AS = [\lambda_1 x_1 \ \lambda_2 x_2 \ \ldots \ \lambda_n x_n]$, where λ_k is the eigenvalue corresponding to x_k, so if we let D be the diagonal matrix with entries $d_{k,k} = \lambda_k$ for $1 \leq k \leq n$, then $AS = SD$. As S is of full rank, it is invertible. Thus left-multiplying by S^{-1} gives us $S^{-1}AS = D$.

Unfortunately, not every matrix is diagonalizable. For example, the only eigenvalue of the matrix

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

is $\lambda = 0$, and solving the equation

$$A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

gives us that $x_2 = 1$. Thus the eigenspace corresponding to zero has dimension one, so we can only have a linearly independent set of eigenvectors of size one, which can never form a basis for \mathbb{C}^2.

1.4.21 Question. Can we find easier conditions for diagonalizability?

1.4.22 Theorem. If $A \in M_n$, $p_A(t) = \prod_{j=1}^{n} (t - \lambda_j)$, and $\lambda_j \neq \lambda_k$ for all $j \neq k$, then A is diagonalizable.

Proof. We will show that A admits a linearly independent set of n eigenvectors. For each $1 \leq j \leq n$, let x_j be such that $Ax_j = \lambda_j x_j$. Suppose that the x_j are not linearly independent. Then there exists a nontrivial linear combination $\alpha_1 x_{j_1} + \alpha_2 x_{j_2} + \ldots + \alpha_r x_{j_r} = 0$ where $r \leq n$ and $\alpha_j \neq 0$ for all $1 \leq j \leq r$. We can choose a linear combination of the x_j that has the minimal possible value for r. Assume, without loss of generality, that $j_1 = 1$, $j_2 = 2$, etc. Otherwise, we can renumber. Then

$$A(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_r x_r) = 0 \iff \alpha_1 \lambda_1 x_1 + \alpha_2 \lambda_2 x_2 + \ldots + \alpha_r \lambda_r x_r = 0.$$
If we subtract from this second equation the equation
\[\lambda_r (\alpha_1 x + \alpha_2 x + \ldots + \alpha_r x) = 0, \]
we obtain
\[\alpha_1 (\lambda_1 - \lambda_r) x_1 + \alpha_2 (\lambda_2 - \lambda_r) x_2 + \ldots + \alpha_{r-1} (\lambda_{r-1} - \lambda_r) x_1 = 0. \]
However, this contradicts the minimality of \(r \): we have found a nontrivial, vanishing linear combination of the \(x_j \) that involves only \(r - 1 \) vectors. Thus the \(x_j \) are linearly independent. \(\square \)

1.4.23 Remark. Unfortunately, this sufficient condition for diagonalizability excludes such matrices as
\[A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. \]
We need to invoke properties of eigenvectors to fully characterize diagonalizability.

1.4.24 Definition. If for \(A \in M_n \), \(p_A(t) = (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \ldots (t - \lambda_r)^{m_r} \), then we say that \(\lambda_j \) has algebraic multiplicity \(m_j \). We call \(\text{null}(\lambda_j I - A) \) the geometric multiplicity of \(\lambda_j \).

1.4.25 Lemma. If \(A \in M_n \) has eigenvalue \(\lambda \), and \(p_A(t) = (t - \lambda)^m q(t) \) where \(q(\lambda) \neq 0 \), then the geometric multiplicity of \(\lambda \) is less than or equal to \(m \); that is, \(\text{null}(\lambda I - A) \leq m \).

Proof. Let \(E_\lambda = \{ x \in \mathbb{C}^n \mid Ax = \lambda x \} \). We choose a basis for \(E_\lambda \) denoted by \(\{ x_1, x_2, \ldots, x_r \} \). We complement this to a basis of \(\mathbb{C}^n \) given by \(\{ x_1, x_2, \ldots, x_r, x_{r+1}, \ldots, x_n \} \). If we let \(S = [x_1 \ x_2 \ldots \ x_n] \), then
\[AS = [\lambda x_1 \ \lambda x_2 \ldots \ \lambda x_r \ y_{r+1} \ y_{r+2} \ldots \ y_n], \]
where \(y_j = Ax_j \) for all \(r + 1 \leq j \leq n \). Recalling that \(S^{-1}S = I \), we see that
\[S^{-1}AS = [\lambda e_1\lambda e_2\ldots\lambda e_r S^{-1}y_{r+1} S^{-1}y_{r+2} \ldots S^{-1}y_n], \]
where \(e_j \) is the \(j \)-th column of the \(r \times r \) identity matrix. In block notation,
\[S^{-1}AS = \begin{bmatrix} \lambda I & B \\ 0 & C \end{bmatrix}, \]
where \(I \) is the \(r \times r \) identity matrix, \(B \in M_{r,n-r} \), and \(C \in M_{n-r,n-r} \). By properties of the determinant,
\[p_A(t) = p_{S^{-1}AS}(t) = p_M(t)p_C(t) = (t - \lambda)^r \det(tI - C). \]

We conclude that the algebraic multiplicity of \(\lambda \) is at least \(r \). \(\square \)

1.4.26 Remark. By factorization of \(p_A \), we have \(p_A(t) = \prod_{j=1}^r (t - \lambda_j)^{r_j} \), so \(\sum_{j=1}^r m_j = n \), and \(\sum_{j=1}^r \dim(E_{\lambda_j}) \leq n \). The only way we can have equality is if \(\dim(E_{\lambda_j}) = m_j \) for each \(j \).

1.4.27 Theorem. A matrix \(A \in M_n \) is diagonalizable if and only if the geometric and algebraic multiplicities of each eigenvalue are equal.

Proof. We begin by noting that if \(\lambda_j \neq \lambda_k \), where \(\lambda_j \) and \(\lambda_k \) are eigenvalues of \(A \), then the corresponding eigenspaces intersect trivially; that is, \(E_{\lambda_j} \cap E_{\lambda_k} = \{0\} \). Thus if \(\{v_1, v_2, \ldots, v_{r_1}\} \) and \(\{u_1, u_2, \ldots, u_{r_2}\} \) form bases for \(E_{\lambda_j} \) and \(E_{\lambda_k} \) respectively, then \(\{v_1, v_2, \ldots, v_{r_1}, u_1, u_2, \ldots, u_{r_2}\} \) is linearly independent. (To be continued). \(\square \)