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1 Further Review continued

Warm-up

Let A,B ∈ Mn and suppose det(A) �= 0. Define a matrix valued function as follows:

F (t) = (A+ tB)−1

The determinant of F (t) is just a polynomial involving the matrix entries. So in particular the
determinant is continuous, so if it is not 0 at t = 0, then it also is not 0 for for t sufficiently
small. Thus, A + tB is invertible for sufficiently small t so our function F at least makes sense
for such t values. Using an explicit formula for the inverse of a matrix in terms of its determinant
and the cofactors, we see that F (t) is actually differentiable for sufficiently small t.

Now, we wish to compute F �(0). Inspired by the blissful days of Calculus, we begin with

(F (t))(F (t))−1 = (A+ tB)−1(A+ tB) = I

and then take the derivative of both sides with respect to t:

d

dt

�
(F (t))(F (t))−1

�
=

d

dt
(I)

The right hand side is 0. The left hand side is:

d

dt

�
(F (t))(F (t))−1

�
= F �(t)(F (t))−1 + F (t)

d

dt

�
(F (t))−1

�

= F �(t)(A+ tB) + F (t)
d

dt
(A+ tB)

= F �(t)(A+ tB) + F (t)B

Together, then, we have that F �(t)(A + tB) + F (t)B = 0, and evaluating at t = 0 gives
F �(0)(A) + F (0)(B) = F �(0)(A) + (A−1)(B) = 0. Right multiplication by A−1 gives F �(0) +
A−1BA−1 = 0, and we have the answer:

F �(0) = −A−1BA−1 .
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1.5 Simultaneous Diagonalization (continued)

1.5.34 Definition. A family F ⊂ Mn is a commuting family if for any A,B ∈ F we have
AB = BA.

1.5.35 Definition. Let A ∈ Mn. A subspace W ⊂ Cn is A-invariant if Aw ∈ W for each
w ∈ W . If F ⊂ Mn is any family of matrices, then W is called F -invariant if it is A-invariant
for every A ∈ F .

So, if W ⊂ Cn is A-invariant, A maps W into itself and does not take any vectors “out of”
W .

1.5.36 Remark. If W ⊂ Cn is A-invariant for some A ∈ Mn and dim(W ) ≥ 1, then there exists
an x ∈ W \{0} such that Ax = λx for some λ ∈ C (i.e., x is an eigenvector for A). Why? If we
restrict A to W , then A|W : W → W is a linear map on a vector space, so it has an eigenvalue
(since our field is C of course).

The notion of invariant subspace gives, in some sense, a “weaker” quality to observe than a
basis of eigenvectors (i.e., diagonalizability). Even if we are not able to find a basis of eigenvectors,
we (may?) be able to break things down into proper invariant subspaces:

1.5.37 Example. Consider the matrix A =




0 1 0
0 0 0
0 0 1



 as a map A : C3 → C3. Then

W = {[x, y, 0]∗ | x, y ∈ C} is an invariant subspace. Two eigenvectors of A are v1 = [1, 0, 0]∗

and v2 = [0, 0, 1]∗ with corresponding eigenvalues λ1 = 0 and λ2 = 1. Note that there is only
a one-dimensional space of eigenvectors in W , but W is two-dimensional. We also have that
V = {[0, 0, z]∗ | z ∈ C} = C is an invariant subspace. So we can write C3 as a direct sum
of proper A-invariant subspaces W ⊕ V but not as the direct sum of eigenspaces, because the
eigenvectors of A do not span C3.

We are considering matrices over C, so the reader may replace R with C and the claims still
hold.

1.5.38 Lemma. If F ⊂ Mn is a commuting family, then there is an x ∈ Cn
such that Ax = λx

for each A ∈ F .

By the previous remark, each A ∈ F has an eigenvector. This lemma says all A ∈ F share a
common eigenvector.

Proof. Choose an F -invariant subspace W ∈ Cn. (There is such a space, since Cn itself is
F -invariant.) Furthermore, choose W so that it has a minimal non-zero dimension. (We
are able to do this by the Well-Ordering Principle for the natural numbers. Observe that
{k : k = dim(W ) and W is an F -invariant subspace} is a non-empty subset of N, since it con-
tains n, so it has a minimum.)

Next, we show that any x ∈ W \ {0} is an eigenvector for each A ∈ F by means of
contradiction. So, for the purpose of contradiction, suppose this is not the case. That is, there is
an A ∈ F and a y ∈ W , y �= 0, such that Ay /∈ Cy (this is just saying y is not an eigenvector of
A). But, from the remark above, we know A has an eigenvector in W , so choose x ∈ W \ {0}
such that Ax = λx.
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Now consider the set
W0 := {z ∈ W : Az = λz}

Note that W0 � W since y ∈ W but y /∈ W0. Also note that W0 is a subspace of W (which is
straightforward to check; note that λ is fixed).

However, if B ∈ F , then for z ∈ W0 we at least have that Bz ∈ W by F -invariance of W .
Then we have that for z ∈ W0,

A(Bz) = ABz = BAz = B(λz) = λBz

where we have used the fact that A and B commute by hypothesis and the fact that Az = λz
by definition of W0. But this shows that Bz ∈ W0 by definition of W0. So B maps W0 into W0.
Since B ∈ F was arbitrary, this implies W0 is F -invariant. But now we have a contradiction.
We chose W to be F -invariant of minimum dimension and have produced a proper F -invariant
subspace of W .

Thus, it must be that for each y ∈ W , Ay ∈ Cy for all A ∈ F .

1.5.39 Remark. Again, this lemma says that when you have a family of commuting matrices, this
family has at least one common eigenvector.

Now we up the ante and define the following:

1.5.40 Definition. A simultaneously diagonalizable family F ⊂ Mn is a family such that there
exists an invertible S ∈ Mn and S−1AS is diagonal for each A ∈ F .

Notice that in the definition the same S “works” for every member of the family.

1.5.41 Theorem. Let F ⊂ Mn be a family of diagonalizable matrices. Then it is a commuting

family if and only if it is simultaneously diagonalizable.

Proof. First suppose that F is simultaneously diagonalizable (via S). Then for A,B ∈ Mn,

AB = S−1D1SS
−1D2S = S−1D1D2S = S−1D2D1S = S−1D2SS

−1D1S = BA

So F is a commuting family.
Conversely suppose that F is a commuting family of diagonalizable matrices. We proceed by

induction on n via a common trick in matrix theory known as “deflation”. The base case, n = 1,
has nothing to prove (M1 = C and everything’s awesome). Now we’ll suppose the theorem holds
for matrices of size n− 1 or less. We’ll take on the size n case by “deflating” it to some n− 1
size cases.

Inductive hypothesis: given a family of diagonalizable matrices F ∈ Mk for k ≤ n − 1, if it
is commuting then it is simultaneously diagonalizable.

Now let F ∈ Mn. If each A ∈ Mn is of the form λI, then there is no work to do (take S = I).
So assume A is diagonalizable with eigenvalues {λ1, . . . , λr} where r ≥ 2 and AB = BA for
each B ∈ F . A is similar to a diagonal matrix, so without loss of generality assume A is diagonal.
Since each B commutes with the diagonal matrix A, each B ∈ F is a block diagonal matrix (see
the theorem about commuting and simultaneously diagonalizable).

Since A had at least two distinct entries, each block of each B has size n− 1 or less.
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By the block-wise commutation property (if we take all the blocks of size k ≤ n − 1 we
have a commuting family), together with the inductive hypothesis, all the blocks (of size k) in
all B ∈ F are simultaneously diagonalizable. Thus there exist fixed matrices T1, T2, . . . , Tr such

that conjugating each B ∈ F with T =





T1

T2
. . .

Tr




gives a block matrix in which the

blocks are diagonal, which is a diagonal matrix. That is, for any B ∈ F ,

T−1BT =





T−1
1 B1T1

T−1
2 B2T2

. . .
T−1
r BrTr





=





D1

D2
. . .

Dr





1.6 Hermitian, Normal, Unitary

1.6.42 Definition. Let A ∈ Mn,m. The adjoint of A, denoted A∗, is an m × n matrix such
that < Ax, y >=< x,A∗y > for all x ∈ Cm and y ∈ Cn. If A ∈ Mn and A = A∗, we say A is
Hermitian or self-adjoint. If A ∈ Mn satisfies A∗ = −A, then it is skew-Hermitian.

Unlike the determinant of a matrix in Cn, the adjoint of a matrix in Cn can be computed
easily:

1.6.43 Proposition (The Adjoint is the Conjugate Transpose). If A ∈ Cn
where A = [aj,k],

then A∗ = [ak,j]. That is, A∗
is the matrix obtained by taking the transpose of A and replacing

each entry with its complex conjugate.

Proof. Recall that for complex vectors x = [x1, ..., xn] and y = [y1, ..., yn], then the dot product
is defined as �x, y� = Σn

k=1xkyk.
Now, let A = [aj,k] and A∗ = [bj,k]. By definition of matrix multiplication and of the dot

product,
�Ax, y� = �[Σn

k=1aj,kxk]
n
j=1 , [y]

n
j=1� = Σn

j=1Σ
n
k=1aj,kxkyj

On the other hand,

�x,A∗y� = �[xj]
n
j=1, [Σ

n
k=1bj,kyk]

n
j=1�

= Σn
j=1

�
xj(Σn

k=1bj,kyk)
�

= Σn
j=1

�
xjΣ

n
k=1bj,kyk

�

= Σn
j=1Σ

n
k=1bj,kxjyk
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where we have used basic facts about taking the conjugate (i.e., ab+ c = ab+ c). Substituting
bj,k = ak,j, the above equals

Σn
j=1Σ

n
k=1ak,jxjyk

and we have shown that A∗ = [ak,j] (simply swap the roles of the indices j and k and compare
to the first equation in this proof). That this is the only such A∗ follows since this must be
true for all x, y ∈ Cn, or by appealing to advanced linear algebra and the Riesz Representation
Theorem.

If we think of the adjoint as analogous to the complex conjugate, then Hermitian matrices
correspond to real numbers and skew-Hermitian matrices correspond to imaginary numbers.

1.6.44 Facts. A = A∗ if and only if (iA) = −(iA)∗. For any A ∈ Mn, there exist unique
self-adjoint B,C ∈ Mn with A = B + iC. Note that

B =
A+ A∗

2
and C =

A− A∗

2i

B is called the Hermitian part of A, and iC is called the skew-Hermitian part of A.

An upcoming proposition gives more credence to the notion of thinking of Hermitian matrices
as analogous to real numbers. But to prove it we make use of the Polarization Identity. This
identity works for general sesquilinear forms, but we only need it for the inner product on Cn.

1.6.45 Lemma (The Polarization Identity). Given x, y ∈ Cn
and a matrix A ∈ Mn, we have

that

�Ax, y� = 1

4
[�A(x+ y), x+ y� − �A(x− y), x− y�+ i�A(x+ iy), x+ iy� − i�A(x− iy), x− iy�]

Proof. This can be proven directly by simplifying the right-hand side, using the properties of the
inner product (linearity in first coordinate, conjugate-linearity in second coordinate).

1.6.46 Remark. Taking A = I above we have the usual presentation of the polarization identity.
Notice that on the right-hand side all the terms are of the form �Az, z�, so we can conclude
something about �Ax, y� when we only know �Ax, x� for all x.

1.6.47 Proposition. A matrix A ∈ Mn is Hermitian if and only if for all x ∈ Cn
we have that

�Ax, x� ∈ R.

Proof. If A is Hermitian, then

�Ax, x� = �x,A∗x� = �x,Ax� = �Ax, x�

which implies �Ax, x� is a real number. Conversely, suppose A ∈ MN satisfies, for all x ∈ Cn,
�Ax, x� ∈ R. We write A in terms of its Hermitian and skew-Hermitian parts: A = B + iC,
where B = B∗ and C = C∗. Then (using linearity of the inner product in the first slot), we have

�Ax, x� = �Bx, x�+ i�Cx, x�
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Since the left hand side is real, the right hand side must be real as well. So it must be that
�Cx, x� = 0 for all x ∈ Cn. We show that C = 0. By the Polarization Identity (see lemma
above), we have that for any x, y ∈ Cn,

�Cx, y� = 1

4
[�C(x+ y), x+ y�

− �C(x− y), x− y�
+ i�C(x+ iy), x+ iy�
− i�C(x− iy), x− iy�]
= 0

since all the terms on the right equal 0, since �Cx, x� = 0 for all x ∈ Cn. Since �Cx, y� = 0 for
all x, y ∈ Cn, we conclude that C = 0. This implies that A = B, so A∗ = B∗ = B = A, so A
is Hermitian.
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