Matrix Theory, Math6304 Lecture Notes from November 13, 2012

taken by Tasadduk Chowdhury

Last Time:

1. More on least squares.
2. Abbreviated SVD.
3. Minimizing norm among solutions of normal equations

$$
\begin{aligned}
A^{*} A x & =A^{*} b \\
\hat{x} & =W_{r} \Sigma_{r}^{-1} V_{r}^{*} b .
\end{aligned}
$$

From last time,

$$
\varphi(x)=\|b-A x\|^{2}=\left\|V_{r}^{*} b-\Sigma_{r} W_{r}^{*} x\right\|^{2}+\left\|V^{\prime *} b\right\|^{2} \geq\left\|V^{\prime *} b\right\|^{2} .
$$

To see that we can achieve equality by minimizing φ, recall minimizers, observe $A^{*} A x=A^{*} b$, in terms of abbreviated SVD,

$$
W_{r} \Sigma_{r} V_{r}^{*} V_{r} \Sigma_{r} W_{r}^{*} x=W_{r} \Sigma_{r} V_{r}^{*} b
$$

So we have $W_{r} \Sigma_{r}^{2} W_{r}^{*} x=W_{r} \Sigma_{r} V_{r}^{*} b$. Using that $W_{r}^{*} W_{r}=I$, we get

$$
\begin{equation*}
\Sigma_{r}^{2} W_{r}^{*} x=\Sigma_{r} V_{r}^{*} b \tag{1}
\end{equation*}
$$

So $\left\|V_{r}^{*} b-\Sigma_{r} W_{r}^{*} x\right\|=0$ if and only if x solves $A^{*} A x=A^{*} b$.
Next, compute the norm of x which solves (1),

$$
\begin{aligned}
\|x\|^{2} & =\left\|\left[\begin{array}{c}
W_{r}^{*} \\
W^{\prime *}
\end{array}\right] x\right\|^{2} \\
& =\left\|W_{r}^{*} x\right\|^{2}+\left\|W^{\prime *} x\right\|^{2} \\
& =\left\|\Sigma_{r}^{-1} V_{r}^{*} b\right\|^{2}+\left\|W^{\prime *} x\right\|^{2} \geq\left\|\Sigma_{r}^{-1} V_{r}^{*} b\right\|^{2}
\end{aligned}
$$

and equality holds iff $W^{* *} x=0$. If this is the case, then

$$
\begin{aligned}
W^{*} x & =\left[\begin{array}{l}
W_{r}^{*} \\
W^{\prime *}
\end{array}\right] x=\left[\begin{array}{c}
\Sigma_{r}^{-1} V_{r}^{*} b \\
0
\end{array}\right] \\
x & =\left[\begin{array}{ll}
W_{r} & W^{\prime}
\end{array}\right]\left[\begin{array}{c}
\Sigma_{r}^{-1} V_{r}^{*} b \\
0
\end{array}\right] \\
& =W_{r} \Sigma_{r}^{-1} V_{r}^{*} b .
\end{aligned}
$$

We see that the minimizer \hat{x} for the norm among all solutions to the normal equations is characterized by

$$
\hat{x}=W_{r} \Sigma_{r}^{-1} V_{r}^{*} b .
$$

Remark

- We conclude there is a linear map $b \mapsto \hat{x} \equiv A^{\dagger} b$, which gives this unique minimum norm least-squares solution.
- If A is invertible, then $A^{\dagger}=W \Sigma^{-1} V^{*}$, or equivalently $A^{\dagger}=A^{-1}$. For this reason, A^{\dagger} is called the pseudo-inverse of A.

5 Matrix Norms and Spectral Radius

5.1 From inner product to Euclidean norm

Recall that inner product $\langle\cdot, \cdot\rangle$ on \mathbb{C}^{n} induces Euclidean norm $\|\cdot\|$ by $\|x\|=\sqrt{\langle x, x\rangle}$, for $x \in \mathbb{C}^{n}$. The defining properties of a norm are positive-definiteness, homogeneity, and triangle inequality.

We can get a norm on matrices from an inner product.
5.1.1 Definition. The Hilbert-Schmidt inner product or Frobenius inner product for $A, B \in M_{n}$ is

$$
\langle A, B\rangle=\sum_{i, j=1}^{n} a_{i, j} \overline{b_{i, j}}=\operatorname{trace}\left[A B^{*}\right]
$$

with $A=\left[a_{i, j}\right]_{i, j=1}^{n}, B=\left[b_{i, j}\right]_{i, j=1}^{n}$. This inner product induces the Frobenius norm,

$$
\|A\|=\sqrt{\operatorname{trace}\left[A A^{*}\right]}=\sqrt{\sum_{i, j=1}^{n}\left|a_{i, j}\right|^{2}}=\sqrt{\operatorname{trace}\left[A^{*} A\right]} .
$$

5.1.2 Remark. We observe that if $\sigma_{1}, \ldots, \sigma_{n}$ are the singular values of A, then

$$
\|A\|=\sqrt{\sum_{j=1}^{n} \sigma_{j}^{2}}
$$

So Frobenius norm can be interpreted as Euclidean norm of singular values.
The Frobenius norm of a matrix product has a convenient estimate. To prepare this, we recall the Cauchy-Schwarz inequality.
5.1.3 Lemma (Cauchy-Schwarz). Take \mathbb{C}^{n} with the usual inner product, then for $x, y \in \mathbb{C}^{n}$,

$$
|\langle x, y\rangle| \leq\|x\|\|y\|
$$

Proof. Without loss of generality, assume $x \neq 0$. We have that the orthogonal projection $Q y$ of y onto \mathbb{C}_{x} satisfies

$$
\|y\|^{2}=\|Q y\|^{2}+\|y-Q y\|^{2},
$$

so $\|Q y\|^{2} \leq\|y\|^{2}$. Since

$$
\|Q y\|^{2}=\left\|\frac{x}{\|x\|}\left\langle\frac{x}{\|x\|}, y\right\rangle\right\|=\frac{|\langle x, y\rangle|^{2}}{\|x\|^{2}}
$$

we have

$$
|\langle x, y\rangle|^{2} \leq\|x\|^{2}\|y\|^{2}
$$

5.1.4 Proposition. Let $A, B \in M_{n}$ and $\|\cdot\|_{F}$ the Frobenius norm, then

$$
\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}
$$

Proof.

$$
\begin{aligned}
\|A B\|_{F}^{2} & =\operatorname{trace}\left[A B B^{*} A^{*}\right] \\
& =\operatorname{trace}\left[\left(A^{*} A\right)\left(B B^{*}\right)\right] \\
& \leq\left(\operatorname{trace}\left[\left(A^{*} A\right)^{2}\right]\right)^{\frac{1}{2}}\left(\operatorname{trace}\left[\left(B B^{*}\right)^{2}\right]\right)^{\frac{1}{2}} \quad(\text { Cauchy-Schwarz }) \\
& =\left\|A^{*} A\right\|_{F}\left\|B B^{*}\right\|_{F} .
\end{aligned}
$$

If $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ are the singular values of A,

$$
\begin{aligned}
\left\|A^{*} A\right\|_{F} & =\left(\sum_{j=1}^{n}\left(\sigma_{j}^{2}\right)^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\left(\sum_{j=1}^{n} \sigma_{j}^{2}\right)^{2}\right)^{\frac{1}{2}} \\
& =\sum_{j=1}^{n} \sigma_{j}^{2}=\operatorname{trace}\left[A^{*} A\right]=\|A\|_{F}^{2}
\end{aligned}
$$

Using the fact that singular values of B^{*} are identical to those of B and repeating this for for B gives

$$
\left\|B B^{*}\right\|_{F} \leq\|B\|_{F}^{2} .
$$

Putting these two estimates together gives

$$
\|A B\|_{F}^{2} \leq\|A\|_{F}^{2}\|B\|_{F}^{2}
$$

Taking square root on both sides gives the claimed inequality.
This property of the Frobenius norm under matrix multiplication is called sub-multiplicativity.
5.1.5 Definition. A function $\left\|\|\cdot\|: M_{n} \rightarrow \mathbb{R}\right.$ is called a matrix norm if for all $A, B \in M_{n}, \lambda \in \mathbb{C}$,
i) $\|A\| \geq 0$ and $\|A\| \|=0$ if and only if $A=0$.
ii) $\||\lambda A|\|=|\lambda|\|| | A\|$.
iii) $\|A+B\| \leq\| \| A\|+\|\|B\|$.
iv) $\|\mid A B\| \leq\|A\|\| \| B \|$.

The preceding proposition shows that the Frobenius norm is a matrix norm. We have other choices for matrix norms.
5.1.6 Theorem. If $\|\cdot\|$ is a norm on \mathbb{C}^{n}, then it induces a matrix norm $\|\cdot\| \|$ on M_{n} by

$$
\|A\|=\max _{\|x\| \leq 1}\|A x\|
$$

Proof. i) We have $\|A A\| \geq 0$. If $\|A\|=0$, then $\max _{\|x\|=1}\|A x\|=0$. So $A x=0$ for all $x,\|x\|=1$. Thus, $A=0$
ii) $\|\lambda A\|=\max _{\|x\| \leq 1}\|\lambda A x\|=|\lambda|\|A \mid\|$.
iii)

$$
\begin{aligned}
\max _{\|x\| \leq 1}\|(A+B) x\| & \leq \max _{\|x\| \leq 1}\|A x\|+\max _{\|x\| \leq 1}\|B x\| \\
& =\|A\|\|+\| B \| .
\end{aligned}
$$

iv)

$$
\max _{\substack{\|x\| \leq 1 \\ x \neq 0}}\|A B x\| \leq \max _{\substack{\|x\| \leq 1 \\ x \neq 0}}\|A\|\| \| B x\|=\| A\| \|\|B\| .
$$

