
Matrix Theory, Math6304
Lecture Notes from November 13, 2012

taken by Tasadduk Chowdhury

Last Time:

1. More on least squares.

2. Abbreviated SVD.

3. Minimizing norm among solutions of normal equations

A∗Ax = A∗b

x̂ = WrΣ
−1
r V ∗

r b.

From last time,

ϕ(x) = �b− Ax�2 = �V ∗
r b− ΣrW

∗
r x�2 + �V �∗b�2 ≥ �V �∗b�2.

To see that we can achieve equality by minimizing ϕ, recall minimizers, observe A∗Ax = A∗b, in
terms of abbreviated SVD,

WrΣrV
∗
r VrΣrW

∗
r x = WrΣrV

∗
r b.

So we have WrΣ2
rW

∗
r x = WrΣrV ∗

r b. Using that W ∗
r Wr = I, we get

Σ2
rW

∗
r x = ΣrV

∗
r b. (1)

So �V ∗
r b− ΣrW ∗

r x� = 0 if and only if x solves A∗Ax = A∗b.
Next, compute the norm of x which solves (1),

�x�2 =
����

�
W ∗

r

W �∗

�
x

����
2

= �W ∗
r x�2 + �W �∗x�2

= �Σ−1
r V ∗

r b�2 + �W �∗x�2 ≥ �Σ−1
r V ∗

r b�2,

and equality holds iff W �∗x = 0. If this is the case, then

W ∗x =

�
W ∗

r

W �∗

�
x =

�
Σ−1

r V ∗
r b

0

�

x =
�
Wr W ��

�
Σ−1

r V ∗
r b

0

�

= WrΣ
−1
r V ∗

r b.
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We see that the minimizer x̂ for the norm among all solutions to the normal equations is charac-
terized by

x̂ = WrΣ
−1
r V ∗

r b.

Remark

• We conclude there is a linear map b �→ x̂ ≡ A†b, which gives this unique minimum norm
least-squares solution.

• If A is invertible, then A† = WΣ−1V ∗, or equivalently A† = A−1. For this reason, A† is
called the pseudo-inverse of A.

5 Matrix Norms and Spectral Radius

5.1 From inner product to Euclidean norm

Recall that inner product �·, ·� on Cn induces Euclidean norm �·� by �x� =
�

�x, x�, for x ∈ Cn.
The defining properties of a norm are positive-definiteness, homogeneity, and triangle inequality.

We can get a norm on matrices from an inner product.

5.1.1 Definition. The Hilbert-Schmidt inner product or Frobenius inner product for A,B ∈ Mn

is

�A,B� =
n�

i,j=1

ai,jbi,j = trace[AB∗],

with A = [ai,j]ni,j=1, B = [bi,j]ni,j=1. This inner product induces the Frobenius norm,

�A� =
�

trace[AA∗] =

����
n�

i,j=1

|ai,j|2 =
�
trace[A∗A].

5.1.2 Remark. We observe that if σ1, . . . , σn are the singular values of A, then

�A� =

����
n�

j=1

σ2
j .

So Frobenius norm can be interpreted as Euclidean norm of singular values.

The Frobenius norm of a matrix product has a convenient estimate. To prepare this, we recall
the Cauchy-Schwarz inequality.

5.1.3 Lemma (Cauchy-Schwarz). Take Cn
with the usual inner product, then for x, y ∈ Cn

,

|�x, y�| ≤ �x��y�.
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Proof. Without loss of generality, assume x �= 0. We have that the orthogonal projection Qy of
y onto Cx satisfies

�y�2 = �Qy�2 + �y −Qy�2,

so �Qy�2 ≤ �y�2. Since

�Qy�2 =
����

x

�x�

�
x

�x� , y
����� =

|�x, y�|2

�x�2 ,

we have
|�x, y�|2 ≤ �x�2�y�2.

5.1.4 Proposition. Let A,B ∈ Mn and � · �F the Frobenius norm, then

�AB�F ≤ �A�F�B�F .

Proof.

�AB�2F = trace[ABB∗A∗]

= trace[(A∗A)(BB∗)]

≤ (trace[(A∗A)2])
1
2 (trace[(BB∗)2])

1
2 (Cauchy-Schwarz)

= �A∗A�F�BB∗�F .

If σ1, σ2, . . . , σn are the singular values of A,

�A∗A�F =

�
n�

j=1

(σ2
j )

2

� 1
2

≤




�

n�

j=1

σ2
j

�2




1
2

=
n�

j=1

σ2
j = trace[A∗A] = �A�2F .

Using the fact that singular values of B∗ are identical to those of B and repeating this for for B
gives

�BB∗�F ≤ �B�2F .

Putting these two estimates together gives

�AB�2F ≤ �A�2F�B�2F .

Taking square root on both sides gives the claimed inequality.

This property of the Frobenius norm under matrix multiplication is called sub-multiplicativity.
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5.1.5 Definition. A function ||| · ||| : Mn → R is called a matrix norm if for all A,B ∈ Mn, λ ∈ C,

i) |||A||| ≥ 0 and |||A||| = 0 if and only if A = 0.

ii) |||λA||| = |λ||||A|||.

iii) |||A+B||| ≤ |||A|||+ |||B|||.

iv) |||AB||| ≤ |||A||||||B|||.

The preceding proposition shows that the Frobenius norm is a matrix norm. We have other
choices for matrix norms.

5.1.6 Theorem. If � · � is a norm on Cn
, then it induces a matrix norm ||| · ||| on Mn by

|||A||| = max
�x�≤1

�Ax�.

Proof. i) We have |||A||| ≥ 0. If |||A||| = 0, then max�x�=1 �Ax� = 0. So Ax = 0 for all
x, �x� = 1. Thus, A = 0

ii) |||λA||| = max�x�≤1 �λAx� = |λ||||A|||.

iii)

max
�x�≤1

�(A+B)x� ≤ max
�x�≤1

�Ax�+ max
�x�≤1

�Bx�

= |||A|||+ |||B|||.

iv)
max
�x�≤1
x �=0

�ABx� ≤ max
�x�≤1
x �=0

|||A|||�Bx� = |||A||||||B|||.

4


