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1.7.12 Lemma. If A ∈Mn has eigenvalue λ , and pA(t) = (t− λ)mq(t) with q(λ) 6= 0 then

r = nul(λI − A) ≤ m

Proof - continued from previous lecture. By the determinant property:

det[tI − A] = det[tI − S−1AS]
= det[(t− λ)Ir]det[tIn−r − C]
= (t− λ)rdet[tIn−r − C]

So, the algebraic multiplicity of λ is at least r.

1.7.13 Remark. By factorization of pA,

pA(t) =
r∏
j=1

(t− λj)mj

we have
n∑
j=1

mj = n

and
n∑
j=1

dimEλj ≤ n

Recall: Eλj = {x ∈ Cn : Ax = λjx}

1.7.14 Theorem. A matrix A ∈Mn is diagonalizable if and only if the geometric and algebraic
multiplicities for each eigenvalue are equal.

Proof. First, we note that if two eigenvalues λj,λk are unequal (λj 6= λk), then the eigenspaces
Eλj ,Eλk intersect trivially (i.e. Eλj

⋂
Eλk = {0}).1 Thus, if {v1, v2, ..., vrj} and {u1, u2, ..., urk}

1Indeed, assume x ∈ Eλj

⋂
Eλk

for two eigenvalues λj 6= λk. Then Ax = λjx and Ax = λkx, so
λjx = λkx =⇒ (λj − λk)x = 0 thus x=0.
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are bases for Eλj and Eλk , then {v1, v2, ..., vrj , u1, u2, ..., urk} is a linearly independent set. Iter-
ating this argument, we obtain from Eλ1 ,Eλ2 ,...,Eλr a basis for the subspace Eλ1+Eλ2+ ...+Eλr

of dimension
r∑
j=1

dimEλj .

Now, assuming that matrix A is diagonalizable, there exists a basis of eigenvectors (by previous
Thm) and we get

r∑
j=1

dimEλj = n

which means that dimEλj = mj, the algebraic multiplicity of λj. (Otherwise, if for some Eλj we

had dimEλj < mj, this would result to
r∑
j=1

dimEλj < n, and then there could be no such basis

of eigenvectors for Cn).
Conversely, if the algebraic and geometric multiplicities are equal, then Eλ1 +Eλ2 + ...+Eλr has
dimension n and we obtain a basis of eigenvectors from the union of bases of the eigenspaces

Next, we investigate diagonalizing multiple matrices.

1.7.15 Definition. Two matrices A,B ∈ Mn are called simultaneously diagonalizable if there
exists some invertible S ∈ Mn such that S−1AS = D1, S−1BS = D2 where both D1, D2 are
diagonal.

1.7.16 Remark. It is not hard to see that if A,B ∈ Mn are simultaneously diagonalizable, then
they commute, i.e. AB = BA

Proof. Indeed

AB = SD1S
−1SD2S

−1

= SD1D2S
−1

= SD2D1S
−1

= SD2S−1SD1S
−1 = BA

For the third equality, recall that the product of diagonal matrices only involves the products of
their diagonal elements, thus D1D2 = D2D1.

Question: Is the converse true?
Ans. We prepare our answer by proving the following:

1.7.17 Lemma (Lemma 1). Two matrices A ∈ Mn, B ∈ Mm are diagonalizable if and only if

the matrix C =

[
A 0
0 B

]
is diagonalizable.

Proof. First, assume S1 diagonalizes A and S2 diagonalizes B. Then for S =

[
S1 0
0 S2

]
we get

S−1
[
A 0
0 B

]
S =

[
S−11 AS1 0

0 S−12 BS2

]
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which is diagonal.

Conversely, assume that S diagonalizes C. Write S in the form

S = [s1s2...sn+m]

where

sj =

[
xj
yj

]
for some xj ∈ Cn, yj ∈ Cm. By the block diagonal structure of C we get that

Csj = λjsj =⇒[
A 0
0 B

] [
xj
yj

]
= λjsj

which implies that
Axj = λjxj

and
Byj = λjyj

Note: The last two results might for a moment lure us into concluding that A and B have the
same eigenvalues. However, this is not the case, since xj, yj might as well be zero.

Next, write

S =

[
X
Y

]
for some X ∈ Cn×(n+m), Y ∈ Cm×(n+m) and observe that, for the (row) rank of S, we have:

rankS ≤ rankX + rankY

as well as
rankX ≤ n, rankY ≤ m

But, by invertibility of S we have
rankS = n+m

So, equality must hold, i.e.
rankX = n

rankY = m

Thus, matrix X = [x1x2...xn+m] has n linearly independent column vectors while Y = [y1y2...yn+m]
has m linearly independent column vectors.

Going back to the expressions Axj = λjxj and Byj = λjyj, this shows that: A has a basis of
n eigenvectors and B has a basis of m eigenvectors. We conclude that A and B are (individually)
diagonalizable.
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1.7.18 Lemma (Lemma 2). (Main ADDITION - Nikolaos Mitsakos) Assume A ∈ Mn, diago-

nalizable, and S−1AS = D1 =

λS1 0
0

. . .

λSn

 Then, for any rearrangement [λT1 ...λTn ] of the

diagonal elements [λS1 ...λSn ] of D1, there exists some T ∈Mn, invertible, such that

T−1AT =

λT1 . . .

λTn


Proof. Choose any rearrangement [λT1 ...λTn ] of the diagonal elements [λS1 ...λSn ] of D1 and

denote D2 =

λT1 . . .

λTn

 Also, let P be the permutation matrix corresponding to the

permutation
(
λS1

...λSn

λT1 ...λTn

)
, i.e. P

λS1

...
λSn

 =

λT1...
λTn

 Finally, let’s use π(i) to denote the position of

the i− th element of [λS1 ...λSn ] in the permuted vector [λT1 ...λTn ].

Recall: P can easily be constructed from the identity matrix In =

e1...
en

 by simply rearranging

its rows, such that P =

eπ(1)...
eπ(n)

.

Then
PD1P

−1 = D2

and
D1 = P−1D2P

(Recall: a permutation matrix is always invertible and P−1 = P T ).
So, we can write

S−1AS = D1 = P−1D2P

and thus
(PS−1)A(SP−1) = D2

Note that (PS−1)−1 = SP−1, so the last result can be reformulated as

(SP−1)−1A(SP−1) = D2

We conclude that T = PS−1 is the desired invertible matrix.

1.7.19 Theorem. (Main Result of the section) Let A,B ∈ Mn be diagonalizable. Then A and
B commute if and only if they are simultaneously diagonalizable.
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Proof. We have already seen (first Remark in this Lecture) that simultaneously diagonalizable
matrices commute. It remains to show the forward direction of the proof.

Assume that A and B commute. Let A′ = S−1AS (A′ being diagonal) and define B′ =
S−1BS. By the previous Lemma - Lemma 2, we can assume that A′ is of the form:

A′ =



λ1
λ1

. . .

λ1
λ2

. . .

λ2
λr

. . .

λr



(can also be written as A′ =


γ1

γ2
. . .

γn

 where the entries have been indexed by row).

By assumption, AB = BA, so

A′B′ = S−1ASS−1BS

= S−1ABS

= S−1BAS

= S−1BSS−1AS

= B′A′

Given that B′ =
[
b′ij
]n
i,j=1

and using the fact that A′ is diagonal, we get

γib
′
i,j = b′i,jγj =⇒ (γi − γj)b′i,j = 0 ∀i, j

This means that b′i,j = 0 when γi 6= γj, in other words B′ is block diagonal: B′ =


B′1

B′2
. . .

B′r


Now, since B′ is diagonalizable, by the previous Lemma (Lemma 1), each of its diagonal

blocks B′i is diagonalizable. Take matrices T1, T2, ..., Tr which diagonize the blocks and write:

T =


T1

T2
. . .

Tr


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Then T−1BT =


T−11 B1T1

T−12 B2T2
. . .

T−1r BrTr

 =


D′1

D′2
. . .

D′r


But also T−1i Ti = I. So

T−1AT =


T−11 λ1IT1

T−12 λ2IT2
. . .

T−1r λrITr

 = A′

We conclude that
A′ = T−1S−1A(ST ) = (ST )−1A(ST )

and
B′′ = T−1S−1BST

are both diagonal.
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