Matrix Theory, Math6304
Lecture Notes from January 28, 2016

taken by Nikolaos Mitsakos

1.7.12 Lemma. If A € M, has eigenvalue \ , and pa(t) = (t — \)"q(t) with g(\) # 0 then
r=nul(A —A) <m
Proof - continued from previous lecture. By the determinant property:

det[t] — A] = det[t] — S~ AS)]
= det[(t — \)I,|det[t],—, — C]
= (t — \)"det[t],—, — C]
So, the algebraic multiplicity of A is at least 7. O]

1.7.13 Remark. By factorization of p4,

we have

and .
Z dimE,\j <n
j=1

Recall: Ey, = {z € C": Az = \;x}

1.7.14 Theorem. A matrix A € M,, is diagonalizable if and only if the geometric and algebraic
multiplicities for each eigenvalue are equal.

Proof. First, we note that if two eigenvalues \;,\; are unequal ()\j # A\i), then the eigenspaces
E\, B, intersect trivially (i.e. Ey, (| Ey, = {0}).* Thus, if {v1,va, ..., 0., } and {uq, us, ..., uy, }

Hndeed, assume z € Ex, N E\, for two eigenvalues \j # A,. Then Az = \;jz and Az = M\, so
Ajx = Az = (A — M)z = 0 thus x=0.



are bases for Iy, and I, then {v1,vs, ..., v, U1, Ug, ..., Uy, } is & linearly independent set. Iter-
ating this argument, we obtain from E),,F),,...,E), a basis for the subspace E, + E), +...+ E),
T

of dimension }_ dimFE),.

j=1
Now, assuming that matrix A is diagonalizable, there exists a basis of eigenvectors (by previous
Thm) and we get

ET: dimEy;, =n
j=1

which means that dimFE), = m;, the algebraic multiplicity of ;. (Otherwise, if for some Ey; we

T
had dz’mE,\j < m;, this would result to > dimE,\j < n, and then there could be no such basis
j=1
of eigenvectors for C").

Conversely, if the algebraic and geometric multiplicities are equal, then E), + E), + ... + E)_ has
dimension n and we obtain a basis of eigenvectors from the union of bases of the eigenspaces [

Next, we investigate diagonalizing multiple matrices.

1.7.15 Definition. Two matrices A, B € M,, are called simultaneously diagonalizable if there
exists some invertible S € M, such that S~'AS = D;, S™'BS = D, where both D;, D, are
diagonal.

1.7.16 Remark. It is not hard to see that if A, B € M, are simultaneously diagonalizable, then
they commute, i.e. AB = BA

Proof. Indeed
AB = SD;S718D,S™!
== SDngsil

= SDyD;S7!
= SD,S—1SD;S™' = BA

For the third equality, recall that the product of diagonal matrices only involves the products of
their diagonal elements, thus DDy = Dy D;. O

Question: Is the converse true?
Ans. We prepare our answer by proving the following:

1.7.17 Lemma (Lemma 1). Two matrices A € M,, B € M,, are diagonalizable if and only if

the matrix C' = [61 ng is diagonalizable.

Proof. First, assume S; diagonalizes A and S, diagonalizes B. Then for S = [%1 g] we get
2

A0 STAS 0
-1 _ 1 1
5 [0 B} 5= { 0 52—1352]



which is diagonal.
Conversely, assume that S diagonalizes C'. Write S in the form

S = [5132-'-5n+m]

Lj
§; =
’ LJJ}

for some z; € C",y; € C™. By the block diagonal structure of C' we get that

where

which implies that

and

By; = Ajy;
Note: The last two results might for a moment lure us into concluding that A and B have the
same eigenvalues. However, this is not the case, since x;,1y; might as well be zero.

[

for some X € C"*(*tm) 'y ¢ C™*("+™) and observe that, for the (row) rank of S, we have:

Next, write

rankS < rankX + rankY

as well as
rankX <n, rankY <m

But, by invertibility of S' we have
rankS =n+m

So, equality must hold, i.e.
rankX =n

rankY =m

Thus, matrix X = [z125...2, ] has n linearly independent column vectors while Y = [y195...Un1m)
has m linearly independent column vectors.

Going back to the expressions Ax; = \jz; and By; = \;y;, this shows that: A has a basis of
n eigenvectors and B has a basis of m eigenvectors. We conclude that A and B are (individually)
diagonalizable. O]



1.7.18 Lemma (Lemma 2). (Main ADDITION - Nikolaos Mitsakos) Assume A € M,,, diago-

As,
nalizable, and S™*AS = D, = 0 Then, for any rearrangement [Ar,...Ar, | of the
As,,
diagonal elements [\g,...\s, | of Dy, there exists some T' € M, invertible, such that
Ay
T AT =
At,
Proof. Choose any rearrangement [Ar,... A1, | of the diagonal elements [Ag,...\s, ] of D; and
A7y
denote Dy = Also, let P be the permutation matrix corresponding to the
AT,
)‘31 )\TI
permutation (;\iliin) ie. P| 1| = | Finally, let's use 7(i) to denote the position of
1 n
As, AT,
the i — th element of [Ag,...\g,] in the permuted vector [Ap,... A7, ].
€1
Recall: P can easily be constructed from the identity matrix I, = | : | by simply rearranging
en
En(1)
its rows, such that P =
En(n)
Then
PDlpil = D2
and
D, =P 'D,P

(Recall: a permutation matrix is always invertible and P! = PT).

So, we can write
S™'AS =D, = P7'D,P

and thus
(PS™HYA(SP™) = D,

Note that (PS™')™' = SP~!, so the last result can be reformulated as
(SP Y TA(SP™) = D,

We conclude that 7= PS~! is the desired invertible matrix.
O

1.7.19 Theorem. (Main Result of the section) Let A, B € M,, be diagonalizable. Then A and
B commute if and only if they are simultaneously diagonalizable.



Proof. We have already seen (first Remark in this Lecture) that simultaneously diagonalizable
matrices commute. It remains to show the forward direction of the proof.

Assume that A and B commute. Let A’ = S™'AS (A’ being diagonal) and define B’ =
S~'BS. By the previous Lemma - Lemma 2, we can assume that A’ is of the form:

A1 1
A1

A

A = A

g
Y2

(can also be written as A’ = . where the entries have been indexed by row).
Tn
By assumption, AB = BA, so

A'B'= S 1ASS™'BS
= S'ABS
= S"'BAS
= S"'BSST1AS
=BA

Given that B’ = [b;j]?jzl and using the fact that A’ is diagonal, we get
Viby; = b v = (vi — )bl =0 Vi,
Bi

B/
This means that b} ; = 0 when ; # -;, in other words B’ is block diagonal: B’ = ?

B/
Now, since B’ is diagonalizable, by the previous Lemma (Lemma 1), each of its diagonal
blocks B! is diagonalizable. Take matrices T}, T5, ..., T, which diagonize the blocks and write:

T
15



7B T, D}

~1
Then T-'BT = el = &

T-'B,T,
But also 7,7'T; = I. So

TOINIT,
-1
- Ty ' M\ I T
TINIT,

We conclude that
A =T 'S TA(ST) = (ST) 'A(ST)

and
B"=T7'S7'BST

are both diagonal.



