Matrix Theory, Math6304 Lecture Notes from January 28, 2016

taken by Nikolaos Mitsakos

1.7.12 Lemma. If $A \in M_n$ has eigenvalue λ , and $p_A(t) = (t - \lambda)^m q(t)$ with $q(\lambda) \neq 0$ then

$$r = nul(\lambda I - A) \le m$$

Proof - continued from previous lecture. By the determinant property:

$$det[tI - A] = det[tI - S^{-1}AS]$$
$$= det[(t - \lambda)I_r]det[tI_{n-r} - C]$$
$$= (t - \lambda)^r det[tI_{n-r} - C]$$

So, the algebraic multiplicity of λ is at least r.

1.7.13 Remark. By factorization of p_A ,

$$p_A(t) = \prod_{j=1}^r (t - \lambda_j)^{m_j}$$

we have

$$\sum_{j=1}^{n} m_j = n$$

and

$$\sum_{j=1}^{n} dim E_{\lambda_j} \le n$$

Recall: $E_{\lambda_j} = \{x \in \mathbb{C}^n : Ax = \lambda_j x\}$

1.7.14 Theorem. A matrix $A \in M_n$ is diagonalizable if and only if the geometric and algebraic multiplicities for each eigenvalue are equal.

Proof. First, we note that if two eigenvalues λ_j, λ_k are unequal $(\lambda_j \neq \lambda_k)$, then the eigenspaces $E_{\lambda_j}, E_{\lambda_k}$ intersect trivially (i.e. $E_{\lambda_j} \cap E_{\lambda_k} = \{0\}$).¹ Thus, if $\{v_1, v_2, ..., v_{r_j}\}$ and $\{u_1, u_2, ..., u_{r_k}\}$

¹Indeed, assume $x \in E_{\lambda_j} \bigcap E_{\lambda_k}$ for two eigenvalues $\lambda_j \neq \lambda_k$. Then $Ax = \lambda_j x$ and $Ax = \lambda_k x$, so $\lambda_j x = \lambda_k x \Longrightarrow (\lambda_j - \lambda_k) x = 0$ thus x=0.

are bases for E_{λ_j} and E_{λ_k} , then $\{v_1, v_2, ..., v_{r_j}, u_1, u_2, ..., u_{r_k}\}$ is a linearly independent set. Iterating this argument, we obtain from $E_{\lambda_1}, E_{\lambda_2}, ..., E_{\lambda_r}$ a basis for the subspace $E_{\lambda_1} + E_{\lambda_2} + ... + E_{\lambda_r}$ of dimension $\sum_{j=1}^r dim E_{\lambda_j}$.

Now, assuming that matrix A is diagonalizable, there exists a basis of eigenvectors (by previous Thm) and we get

$$\sum_{j=1}^{r} dim E_{\lambda_j} = n$$

which means that $dim E_{\lambda_j} = m_j$, the algebraic multiplicity of λ_j . (Otherwise, if for some E_{λ_j} we had $dim E_{\lambda_j} < m_j$, this would result to $\sum_{j=1}^r dim E_{\lambda_j} < n$, and then there could be <u>no</u> such basis of eigenvectors for \mathbb{C}^n).

Conversely, if the algebraic and geometric multiplicities are equal, then $E_{\lambda_1} + E_{\lambda_2} + ... + E_{\lambda_r}$ has dimension n and we obtain a basis of eigenvectors from the union of bases of the eigenspaces \Box

Next, we investigate diagonalizing multiple matrices.

1.7.15 Definition. Two matrices $A, B \in M_n$ are called simultaneously diagonalizable if there exists some invertible $S \in M_n$ such that $S^{-1}AS = D_1$, $S^{-1}BS = D_2$ where both D_1, D_2 are diagonal.

1.7.16 Remark. It is not hard to see that if $A, B \in M_n$ are simultaneously diagonalizable, then they commute, i.e. AB = BA

Proof. Indeed

$$AB = SD_1S^{-1}SD_2S^{-1}$$

= $SD_1D_2S^{-1}$
= $SD_2D_1S^{-1}$
= $SD_2S^{-1}SD_1S^{-1} = BA$

For the third equality, recall that the product of diagonal matrices only involves the products of their diagonal elements, thus $D_1D_2 = D_2D_1$.

Question: Is the converse true? **Ans.** We prepare our answer by proving the following:

1.7.17 Lemma (Lemma 1). Two matrices $A \in M_n$, $B \in M_m$ are diagonalizable if and only if the matrix $C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ is diagonalizable.

Proof. First, assume S_1 diagonalizes A and S_2 diagonalizes B. Then for $S = \begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix}$ we get $S^{-1} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} S = \begin{bmatrix} S_1^{-1}AS_1 & 0 \\ 0 & S_2^{-1}BS_2 \end{bmatrix}$

which is diagonal.

Conversely, assume that S diagonalizes C. Write S in the form

$$S = [s_1 s_2 \dots s_{n+m}]$$

where

$$s_j = \begin{bmatrix} x_j \\ y_j \end{bmatrix}$$

for some $x_j \in \mathbb{C}^n, y_j \in \mathbb{C}^m$. By the block diagonal structure of C we get that

$$Cs_{j} = \lambda_{j}s_{j} \Longrightarrow$$

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} x_{j} \\ y_{j} \end{bmatrix} = \lambda_{j}s_{j}$$

$$Ax_{j} = \lambda_{j}x_{j}$$

which implies that

and

$$By_j = \lambda_j y_j$$

Note: The last two results might for a moment lure us into concluding that A and B have the same eigenvalues. However, this is not the case, since x_j, y_j might as well be zero.

Next, write

$$S = \begin{bmatrix} X \\ Y \end{bmatrix}$$

for some $X \in \mathbb{C}^{n \times (n+m)}, Y \in \mathbb{C}^{m \times (n+m)}$ and observe that, for the (row) rank of S, we have:

$$rankS \le rankX + rankY$$

as well as

$$rankX \le n, rankY \le m$$

But, by invertibility of S we have

$$rankS = n + m$$

So, equality must hold, i.e.

$$rankX = n$$
$$rankY = m$$

Thus, matrix $X = [x_1x_2...x_{n+m}]$ has n linearly independent column vectors while $Y = [y_1y_2...y_{n+m}]$ has m linearly independent column vectors.

Going back to the expressions $Ax_j = \lambda_j x_j$ and $By_j = \lambda_j y_j$, this shows that: A has a basis of n eigenvectors and B has a basis of m eigenvectors. We conclude that A and B are (individually) diagonalizable.

1.7.18 Lemma (Lemma 2). (Main ADDITION - Nikolaos Mitsakos) Assume $A \in M_n$, diagonalizable, and $S^{-1}AS = D_1 = \begin{bmatrix} \lambda_{S_1} & \mathbf{0} \\ \mathbf{0} & \ddots & \lambda_{S_n} \end{bmatrix}$ Then, for any rearrangement $[\lambda_{T_1}...\lambda_{T_n}]$ of the diagonal elements $[\lambda_{S_1}...\lambda_{S_n}]$ of D_1 , there exists some $T \in M_n$, invertible, such that

$$T^{-1}AT = \begin{bmatrix} \lambda_{T_1} & & \\ & \ddots & \\ & & \lambda_{T_n} \end{bmatrix}$$

Proof. Choose any rearrangement $[\lambda_{T_1}...\lambda_{T_n}]$ of the diagonal elements $[\lambda_{S_1}...\lambda_{S_n}]$ of D_1 and denote $D_2 = \begin{bmatrix} \lambda_{T_1} & & \\ & \ddots & \\ & & \lambda_{T_n} \end{bmatrix}$ Also, let P be the permutation matrix corresponding to the permutation $\begin{pmatrix} \lambda_{S_1} \dots \lambda_{S_n} \\ \lambda_{T_1} \dots \lambda_{T_n} \end{pmatrix}$, i.e. $P \begin{bmatrix} \lambda_{S_1} \\ \vdots \\ \lambda_{S_n} \end{bmatrix} = \begin{bmatrix} \lambda_{T_1} \\ \vdots \\ \lambda_{T_n} \end{bmatrix}$ Finally, let's use $\pi(i)$ to denote the position of the i - th element of $[\lambda_{S_1} \dots \lambda_{S_n}]$ in the permuted vector $[\lambda_{T_1} \dots \lambda_{T_n}]$. Recall: P can easily be constructed from the identity matrix $I_n = \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}$ by simply rearranging

its rows, such that
$$P = \begin{bmatrix} e_{\pi(1)} \\ \vdots \\ e_{\pi(n)} \end{bmatrix}$$
.

I hen

$$PD_1P^{-1} = D_2$$

and

$$D_1 = P^{-1}D_2P$$

(Recall: a permutation matrix is always invertible and $P^{-1} = P^T$). So, we can write

$$S^{-1}AS = D_1 = P^{-1}D_2P$$

and thus

$$(PS^{-1})A(SP^{-1}) = D_2$$

Note that $(PS^{-1})^{-1} = SP^{-1}$, so the last result can be reformulated as

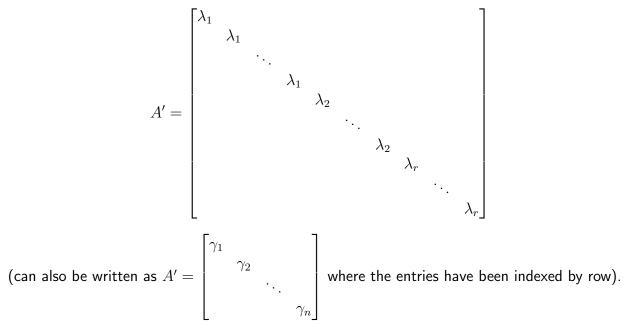
$$(SP^{-1})^{-1}A(SP^{-1}) = D_2$$

We conclude that $T = PS^{-1}$ is the desired invertible matrix.

1.7.19 Theorem. (Main Result of the section) Let $A, B \in M_n$ be diagonalizable. Then A and B commute if and only if they are simultaneously diagonalizable.

Proof. We have already seen (first Remark in this Lecture) that simultaneously diagonalizable matrices commute. It remains to show the forward direction of the proof.

Assume that A and B commute. Let $A' = S^{-1}AS$ (A' being diagonal) and define B' = $S^{-1}BS$. By the **previous Lemma - Lemma 2**, we can assume that A' is of the form:



By assumption, AB = BA, so

$$A'B' = S^{-1}ASS^{-1}BS$$
$$= S^{-1}ABS$$
$$= S^{-1}BAS$$
$$= S^{-1}BSS^{-1}AS$$
$$= B'A'$$

Given that $B' = \left[b'_{ij}\right]_{i,j=1}^n$ and using the fact that A' is diagonal, we get

$$\gamma_i b'_{i,j} = b'_{i,j} \gamma_j \Longrightarrow (\gamma_i - \gamma_j) b'_{i,j} = 0 \quad \forall i, j$$

This means that $b'_{i,j} = 0$ when $\gamma_i \neq \gamma_j$, in other words B' is block diagonal: $B' = \begin{bmatrix} D_1 \\ B'_2 \\ & \ddots \end{bmatrix}$

Now, since B' is diagonalizable, by the previous Lemma (Lemma 1), each of its diagonal blocks B'_i is diagonalizable. Take matrices $T_1, T_2, ..., T_r$ which diagonize the blocks and write:

$$T = \begin{bmatrix} T_1 & & \\ & T_2 & \\ & & \ddots & \\ & & & T_r \end{bmatrix}$$

$$\text{Then } T^{-1}BT = \begin{bmatrix} T_1^{-1}B_1T_1 & & & \\ & T_2^{-1}B_2T_2 & & \\ & & \ddots & \\ & & & T_r^{-1}B_rT_r \end{bmatrix} = \begin{bmatrix} D_1' & & & \\ & D_2' & & \\ & & \ddots & \\ & & & D_r' \end{bmatrix}$$
 But also $T_i^{-1}T_i = I$. So

$$T^{-1}AT = \begin{bmatrix} T_1^{-1}\lambda_1 IT_1 & & & \\ & T_2^{-1}\lambda_2 IT_2 & & \\ & & \ddots & \\ & & & T_r^{-1}\lambda_r IT_r \end{bmatrix} = A'$$

We conclude that

$$A' = T^{-1}S^{-1}A(ST) = (ST)^{-1}A(ST)$$

 $\quad \text{and} \quad$

$$B'' = T^{-1}S^{-1}BST$$

are both diagonal.

-		