First Name:	
Last Name:	
Signature:	
Student I.D. No.:	

Math 6320 Practice Final Exam

December, 2010 Two hours and twenty minutes

University of Houston

Instructions:

- 1. Put your name, signature and I.D. No. in the blanks above.
- 2. There are **four questions** in this exam. Answer the questions in the spaces provided, using the backs of pages or the blank pages at the end for overflow or rough work.
- 3. Your grade will be influenced by how clearly you present your solutions. Justify your solutions carefully by referring to definitions and results from class where appropriate.
- 4. This is a closed book exam.

- 1. Let (X, M, μ) be a measure space, and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable functions.
 - (a) Define almost everywhere convergence of the sequence and define convergence in $L^1(\mu)$.
 - (b) Prove that any sequence which is Cauchy with respect to the metric induced by the norm on $L^1(\mu)$ has an almost everywhere converging subsequence.

2. Recall that a Borel measure μ on the Borel algebra B of a topological space X is regular on a set $A \in B$ if for all $\epsilon > 0$ there exists a compact set K and an open set V with $K \subset A \subset V$ such that $K \subset A \subset V$ and $\mu(V \setminus K) < \epsilon$. If X is a compact metric space then show that any finite Borel measure μ on (X, B) is regular, meaning it is regular on all $A \in B$.

Suggestion: Start by showing that the class of sets on which μ is regular is a $\sigma\text{-algebra}.$

3. Let (X, M, μ) be a measure space. Let S be the class of complexvalued measurable simple functions which are non-zero on a set of finite measure. If $1 \le p < \infty$, show that S is dense in $L^p(\mu)$.

- 4. Consider a Hilbert space H and a subspace M.
 - (a) Prove that M^{\perp} , the orthogonal complement of M, is a closed subspace.
 - (b) Prove that the closure of M is identical to $(M^{\perp})^{\perp}.$