MATH 6360

Applicable Analysis
Fall 2021

First name: \qquad Last name: \qquad

Points:

Assignment 1, due Thursday, September 2, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $\mathbb{Z}_{2}=\{0,1\}$ and for $n \in \mathbb{N}$, the set $X=\mathbb{Z}_{2}^{n}$ contain all $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with entries $x_{j} \in \mathbb{Z}_{2}$, $1 \leq j \leq n$. Define a metric d on X by $d(x, y)=\sum_{j=1}^{n}\left|x_{j}-y_{j}\right|$.
a. Show that for any $x \in X$, the closed ball $\overline{B_{r}}(x)$ of radius $r \in \mathbb{N}$, centered at x, has at least $(n / r)^{r}$ elements. (Hint: First explain why the size of the ball is larger than $\binom{n}{r}=\frac{n(n-1) \cdots(n-r+1)}{r(r-1) \cdots 1}$.)
b. Show that for $r \in \mathbb{N}$, if x and x^{\prime} have distance $d\left(x, x^{\prime}\right)>2 r$, then $\overline{B_{r}}(x)$ and $\overline{B_{r}}\left(x^{\prime}\right)$ are disjoint.
c. Let $r \in \mathbb{N}$ and $x^{(1)}, x^{(2)}, \ldots, x^{(k)}$ have mutual distance $d\left(x^{(i)}, x^{\left(i^{\prime}\right)}\right) \geq 2 r+1$ for all $i \neq i^{\prime}$. By counting elements, prove that $k \leq\left(\frac{r}{n}\right)^{r} 2^{n}$.

Problem 2

Explain why the function $T: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
T(x)=\frac{\pi}{2}+x-\arctan (x)
$$

does not have a fixed point. Prove that for all $x, y \in \mathbb{R}$,

$$
|T(x)-T(y)|<|x-y| .
$$

Why does this example not contradict the contraction mapping theorem?

Problem 3

For $b>0$ and $a \in \mathbb{R}$, define T on $C([0, b])$ by $T f(x)=a+\int_{0}^{x} f(t) x e^{-x t} d t$. Prove that T is a contraction when $C([0, b])$ is equipped with the metric $d_{\infty}(f, g)=\max _{0 \leq t \leq b}|f(t)-g(t)|$. Use this fact to deduce that there is a unique solution $f \in C([0, \infty))$ to the integral equation $f(x)=a+\int_{0}^{x} f(t) x e^{-x t} d t, x \geq 0$.

Problem 4

An $n \times n$ real matrix A is said to be diagonally dominant if for each row the sum of the absolute value of off-diagonal terms in this row is strictly less than the value of the diagonal term in this row. Write $A=D-L-U$, where D is a diagonal matrix, L lower triangular and U upper triangular (both L and U with zero diagonal). Let the row-sum norm $\|X\|_{\infty}$ of a matrix $X=\left(X_{i, j}\right)_{i, j=1}^{n}$ be defined by

$$
\|X\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|X_{i, j}\right|
$$

then show that if A is diagonally dominant, $\|L+U\|_{\infty}<\|D\|_{\infty}$. Consider \mathbb{R}^{n} as a metric space with the (non-Euclidan) metric $d_{\infty}(x, y)=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|$. If A is diagonally dominant, prove that for any $b \in \mathbb{R}^{n}$, a solution to the linear equation $A x=b$ can be obtained as the limit of the sequence $\left(x^{(n)}\right)_{n=1}^{\infty}$ defined by

$$
x^{(n+1)}=D^{-1}(L+U) x^{(n)}+D^{-1} b
$$

and this solution is unique. Thus, explain why any diagonally dominant $n \times n$ matrix A is invertible.

