MATH 6360

Applicable Analysis
 Fall 2021

First name:

\qquad Last name: \qquad Points:

Assignment 2, due Thursday, September 9, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $p \in \mathbb{N}, b>0$ and assume u is the solution of the integral equation

$$
u(x)=\int_{0}^{x} \sin (u(t))(u(t))^{p} d t
$$

on the interval $[-b, b]$.
a. Let $M=\sup _{-b \leq x \leq b}|u(x)|$. Prove that for each integer $n \geq 0,|u(x)| \leq M^{n p}|x|^{n} / n!$. Hint: $|\sin (y)| \leq$ $|y|$.
b. Use the preceding part to show that $u=0$.

Problem 2

Consider the initial value problem with the differential equation $y^{\prime}(x)=1+x y(x)$ and $y(0)=0$.
a. Show that for any $0<b<1$, the integral operator T associated with this differential equation is a contraction mapping on $C([0, b])$, when we use the usual metric.
b. Show that there is a unique solution of this differential equation on $[0, b]$ for this initial value and any $b<\infty$. Hence deduce that there is a unique solution of the initial value problem on $[0, \infty)$.

Problem 3

Consider the initial value problem

$$
y^{\prime}(t)=t^{2}+(y(t))^{2}, y(0)=0
$$

a. Show that for any $b>0$, this differential equation satisfies a local Lipschitz condition (in the second variable) on the set $Q=[0, b] \times[-R, R]$, but not on the set $[0, b] \times \mathbb{R}$.
b. Integrate the inequality $y^{\prime}(t) \geq 1+(y(t))^{2}$ for $t \geq 1$ and use a monotonicity argument to prove that the solution to the initial value problem grows above any bound in finite time.

Problem 4

Let y be the solution to the initial value problem $y^{\prime}(x)=e^{x y(x)}$ and $y(0)=1$ for $x \in[0,1 / 2]$. Suppose you wish to compare this with the solution y_{n} to the initial value problem $y^{\prime}(x)=\sum_{k=0}^{n} \frac{(x y(x))^{k}}{k!}, y_{n}(0)=1$, on [$0,1 / 2]$.

1. Show that as $n \rightarrow \infty, y_{n} \rightarrow y$ uniformly on $[0,1 / 2]$.
2. Find n so that $d_{\infty}\left(y, y_{n}\right) \equiv \max _{0 \leq x \leq 1 / 2}\left|y(x)-y_{n}(x)\right|<0.0001$.
