Fall 2021

First name: \qquad Last name: \qquad

Points:

Assignment 3, due Thursday, September 16, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $a>0$ and consider the integral equation for $f:[-a, a] \rightarrow \mathbb{R}$,

$$
f(x)=1+\frac{1}{\pi} \int_{-a}^{a} \frac{1}{1+(x-y)^{2}} f(y) d y .
$$

Use the contraction mapping theorem and a special starting point $f_{0} \in C([-a, a])$ to show that the integral equation has a unique non-negative solution in $C([-a, a])$. Hint: Use $f_{0}(x)=0$ and then find an inductive proof that the sequence $\left(f_{n}\right)_{n=0}^{\infty}$ associated with the integral operator only contains non-negative functions.

Problem 2

Let A be a $d \times d$ matrix such that there is $0<r<1$ and the linear map $T_{A}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ given by matrix-vector multiplication $T_{A}: x \mapsto A x$ satisfies $\|A x-x\| \leq r\|x\|$ for each $x \in \mathbb{R}^{d}$, where $\|a\|$ is the Euclidean length of the vector a. For fixed $y \in \mathbb{R}^{d}$, consider any x_{0} and define a sequence $\left(x_{n}\right)_{n=0}^{\infty}$ by letting $x_{n+1}=x_{n}-A x_{n}+y$. Explain why the sequence converges and if $x^{*}=\lim _{n \rightarrow \infty} x_{n}$, compute $A x^{*}$.

Problem 3

Let y be a solution of the initial value problem $y^{\prime}(x)=h(x, y(x))$ and $y(a)=y_{0}$, where h is continuous on $[a, b] \times \mathbb{R}$ and K-Lipschitz in the second variable. Assume η is a differentiable function satisfying $\left|\eta^{\prime}(x)-h(x, \eta(x))\right| \leq \epsilon$ for each $x \in[a, b]$ and $\left|\eta(a)-y_{0}\right| \leq \delta$. Show that for $x \in[a, b]$,

$$
|y(x)-\eta(x)| \leq \delta e^{K(x-a)}+\frac{\epsilon}{K}\left(e^{K(x-a)}-1\right) .
$$

Hint: Find a variation of the proof for stability of solutions.

Problem 4

Let $h:[a, b] \times \mathbb{R}$ be a continuous function and for each fixed $x \in[a, b], y \mapsto h(x, y)$ is non-increasing in y.
a. Let f and g be two solutions to the differential equation $y^{\prime}(x)=h(x, y(x))$ with any (possibly different) initial values. Show that $\tau(x)=|f(x)-g(x)|$ is non-increasing in x. Hint: If $f(x)>g(x)$ on some interval I and $\left(x_{1}, x_{2}\right) \subset I$, express $f\left(x_{2}\right)-g\left(x_{2}\right)-\left(f\left(x_{1}\right)-g\left(x_{1}\right)\right)$ as an integral.
b. Use the preceding part to show that if the initial value problem with $f(a)=y_{0}, y_{0} \in \mathbb{R}$, has a solution on $[a, b]$, then it is unique. Hint: If there are two solutions f and g that are different, say $f\left(x_{0}\right)>g\left(x_{0}\right)$ for some $x_{0} \in[a, b]$, then $\lim _{x \rightarrow a}(f(x)-g(x))>0$. This leads to a contradiction with $f(a)=g(a)$.

