Applicable Analysis Fall 2021

MATH 6360

First name:	Last name:	Points:
-------------	------------	---------

Assignment 3, due Thursday, September 16, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let a > 0 and consider the integral equation for $f : [-a, a] \to \mathbb{R}$,

$$f(x) = 1 + \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^2} f(y) dy \,.$$

Use the contraction mapping theorem and a special starting point $f_0 \in C([-a, a])$ to show that the integral equation has a unique non-negative solution in C([-a, a]). Hint: Use $f_0(x) = 0$ and then find an inductive proof that the sequence $(f_n)_{n=0}^{\infty}$ associated with the integral operator only contains non-negative functions.

Problem 2

Let A be a $d \times d$ matrix such that there is 0 < r < 1 and the linear map $T_A : \mathbb{R}^d \to \mathbb{R}^d$ given by matrix-vector multiplication $T_A : x \mapsto Ax$ satisfies $||Ax - x|| \leq r||x||$ for each $x \in \mathbb{R}^d$, where ||a|| is the Euclidean length of the vector a. For fixed $y \in \mathbb{R}^d$, consider any x_0 and define a sequence $(x_n)_{n=0}^{\infty}$ by letting $x_{n+1} = x_n - Ax_n + y$. Explain why the sequence converges and if $x^* = \lim_{n \to \infty} x_n$, compute Ax^* .

Problem 3

Let y be a solution of the initial value problem y'(x) = h(x, y(x)) and $y(a) = y_0$, where h is continuous on $[a, b] \times \mathbb{R}$ and K-Lipschitz in the second variable. Assume η is a differentiable function satisfying $|\eta'(x) - h(x, \eta(x))| \le \epsilon$ for each $x \in [a, b]$ and $|\eta(a) - y_0| \le \delta$. Show that for $x \in [a, b]$,

$$|y(x) - \eta(x)| \le \delta e^{K(x-a)} + \frac{\epsilon}{K} (e^{K(x-a)} - 1) \,.$$

Hint: Find a variation of the proof for stability of solutions.

Problem 4

Let $h: [a,b] \times \mathbb{R}$ be a continuous function and for each fixed $x \in [a,b], y \mapsto h(x,y)$ is non-increasing in y.

- a. Let f and g be two solutions to the differential equation y'(x) = h(x, y(x)) with any (possibly different) initial values. Show that $\tau(x) = |f(x) g(x)|$ is non-increasing in x. Hint: If f(x) > g(x) on some interval I and $(x_1, x_2) \subset I$, express $f(x_2) g(x_2) (f(x_1) g(x_1))$ as an integral.
- b. Use the preceding part to show that if the initial value problem with $f(a) = y_0, y_0 \in \mathbb{R}$, has a solution on [a, b], then it is unique. Hint: If there are two solutions f and g that are different, say $f(x_0) > g(x_0)$ for some $x_0 \in [a, b]$, then $\lim_{x \to a} (f(x) g(x)) > 0$. This leads to a contradiction with f(a) = g(a).