MATH 6360 Applicable Analysis Fall 2021

First name: Last name: Points	
-------------------------------	--

Assignment 4, due Thursday, September 23, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that the Hölder inequality for $f, g \in C([a, b])$ and 1 cannot be improved because $for any <math>f \in C([a, b])$, there is $g \in C([a, b])$ such that $\int_a^b fg dx = \|f\|_p \|g\|_q$, 1/p + 1/q = 1. Hint: For $x \in [a, b]$ with $f(x) \neq 0$, set $g(x) = |f(x)|^p / f(x)$ and if f(x) = 0 set g(x) = 0.

Problem 2

Show that if $1 \leq r < s$, then there is a constant $C_{r,s}$ such that if $f \in C([a,b])$, then $||f||_r \leq C_{r,s} ||f||_s$. Hint: Use Hölder's inequality and note if $g(x) = |f(x)|^r$, h(x) = 1, then $\int_a^b |g(x)h(x)|dx = ||f||_r^r$.

Problem 3

Recall that ℓ^p is the space containing each sequence $x = (x_j)_{j=1}^{\infty}$ for which $\sum_{j=1}^{\infty} |x_j|^p < \infty$. Show that if $1 \le r < s$, then $||x||_s \le ||x||_r$. Hint: It is enough to show this for $||x||_r \le 1$.

Problem 4

Recall that $[a, b] \subset \mathbb{R}$ is totally bounded, so it has a countable dense subset. Show that the space C([a, b]), equipped with d_{∞} , is separable, meaning it also has a countable dense subset. Hint: If function values are specified at a few points, then a function can be constructed by linearly interpolating.

Problem 5

By choosing balls centered in binary sequences, show the sequence space ℓ^{∞} is not separable. You may quote that the set of binary sequences $S = \{a = (a_1, a_2, ...) : a_j \in \{0, 1\}$ for each $j\}$ is not countable, without proof.