MATH 6360

Applicable Analysis
Fall 2021

First name: \qquad Last name: \qquad

Points:

Assignment 5, due Thursday, October 14, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let (X, d) and (Y, ρ) be metric spaces with completions (C, d) and (D, ρ), assuming $X \subset C$ and $Y \subset D$. Prove that the metric the space $(X \times Y, \sigma)$ with the metric $\sigma\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right)\right\}$ has the completion $(C \times D, \sigma)$.

Problem 2

Let $c_{0,0}$ be the space of sequences that are eventually zero, so for each $x=\left(x_{1}, x_{2}, \ldots\right) \in c_{0,0}$, there is $N \in \mathbb{N}$ such that for all $n \geq N, x_{n}=0$. Equip this space with the metric d_{∞}. Show that the completion of $c_{0,0}$ is the space c_{0}, containing each sequence x with $\lim _{n \rightarrow \infty} x_{n}=0$. Hint: You know $c_{0,0} \subset \ell^{\infty}$ and that ℓ^{∞} is complete.

Problem 3

Let U be an open set in the interval $[a, b]$.
a. Show that the distance of any point x in U from the complement $U^{c}=[a, b] \backslash U$, given by $d\left(x, U^{c}\right)=$ $\inf _{y \in U^{c}} d(x, y)$, is a continuous function on U. (Hint: U^{c} is closed.)
b. Show that the characteristic function χ_{U} of an open set $U \subset[a, b]$ is the (pointwise) limit of an increasing sequence of continuous functions. Here, $\chi_{U}(x)=1$ if and only if $x \in U$ and otherwise $\chi_{U}(x)=0$. Hint: Use the distance function to construct such a sequence, starting with $f_{1}(x)=$ $\min \left\{1, d\left(x, U^{c}\right)\right\}$.
c. Use a result from class to deduce that the increasing sequence is Cauchy in $L^{1}([a, b])$ and hence that the characteristic function of any open set $U \subset[a, b]$ is in $L^{1}([a, b])$.

Problem 4

Define a map $T: C([0,1]) \rightarrow C([0,1])$ by

$$
T f(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

where $k:[0,1] \times[0,1] \rightarrow \mathbb{R}$ is continuous. Show that the operator norm $\|T\|$ equals

$$
\|T\| \equiv \sup \left\{\|T f\|_{\infty}: f \in C([0,1]),\|f\|_{\infty} \leq 1\right\}=\max _{0 \leq x \leq 1} \int_{0}^{1}|k(x, y)| d y
$$

Hint: If for $x \in[0,1], s(y)=1$ if $k(x, y)>0, s(y)=0$ if $k(x, y)=0$, and $s(y)=-1$ otherwise, then s is in $L^{1}([0,1])$. Extending the integral to $L^{1}([0,1])$ then gives $\int_{[0,1]} k(x, y) s(y) d y=\int_{0}^{1}|k(x, y)| d y$.

