MATH 6360

Applicable Analysis Fall 2021

First name: La	ast name:	Points:
----------------	-----------	---------

Assignment 5, due Thursday, October 14, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let (X, d) and (Y, ρ) be metric spaces with completions (C, d) and (D, ρ) , assuming $X \subset C$ and $Y \subset D$. Prove that the metric the space $(X \times Y, \sigma)$ with the metric $\sigma((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), \rho(y_1, y_2)\}$ has the completion $(C \times D, \sigma)$.

Problem 2

Let $c_{0,0}$ be the space of sequences that are eventually zero, so for each $x=(x_1,x_2,\dots)\in c_{0,0}$, there is $N\in\mathbb{N}$ such that for all $n\geq N$, $x_n=0$. Equip this space with the metric d_{∞} . Show that the completion of $c_{0,0}$ is the space c_0 , containing each sequence x with $\lim_{n\to\infty}x_n=0$. Hint: You know $c_{0,0}\subset\ell^{\infty}$ and that ℓ^{∞} is complete.

Problem 3

Let U be an open set in the interval [a, b].

- a. Show that the distance of any point x in U from the complement $U^c = [a, b] \setminus U$, given by $d(x, U^c) = \inf_{u \in U^c} d(x, y)$, is a continuous function on U. (Hint: U^c is closed.)
- b. Show that the characteristic function χ_U of an open set $U \subset [a,b]$ is the (pointwise) limit of an increasing sequence of continuous functions. Here, $\chi_U(x) = 1$ if and only if $x \in U$ and otherwise $\chi_U(x) = 0$. Hint: Use the distance function to construct such a sequence, starting with $f_1(x) = \min\{1, d(x, U^c)\}$.
- c. Use a result from class to deduce that the increasing sequence is Cauchy in $L^1([a,b])$ and hence that the characteristic function of any open set $U \subset [a,b]$ is in $L^1([a,b])$.

Problem 4

Define a map $T:C([0,1])\to C([0,1])$ by

$$Tf(x) = \int_0^1 k(x, y) f(y) dy$$

where $k:[0,1]\times[0,1]\to\mathbb{R}$ is continuous. Show that the operator norm ||T|| equals

$$||T|| \equiv \sup\{||Tf||_{\infty} : f \in C([0,1]), ||f||_{\infty} \le 1\} = \max_{0 \le x \le 1} \int_0^1 |k(x,y)| dy.$$

Hint: If for $x \in [0,1]$, s(y) = 1 if k(x,y) > 0, s(y) = 0 if k(x,y) = 0, and s(y) = -1 otherwise, then s is in $L^1([0,1])$. Extending the integral to $L^1([0,1])$ then gives $\int_{[0,1]} k(x,y) s(y) dy = \int_0^1 |k(x,y)| dy$.