MATH 6360 Applicable Analysis Fall 2021

First name: _	Last name:	Points:
---------------	------------	---------

Assignment 6, due Thursday, October 21, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let C([-1,1]) be equipped with the norm $||f||_1 = \int_{-1}^1 |f(x)| dx$. Show that the linear functional $F: f \mapsto f(0)$ is not bounded.

Problem 2

Show that if X and Y are normed spaces, and B(X, Y) is a Banach space, then Y is a Banach space. Hint: If $F \in X^*$ is not the zero functional, consider $T : Y \to B(X, Y)$ given by T(y)x = F(x)y. Show T is linear and compare ||y|| with ||T(y)||.

Problem 3

Let c_0 be the normed vector space containing each sequence $x = (x_n)_{n \in \mathbb{N}}$ with $\lim_n x_n = 0$, equipped with the norm $||x||_{\infty} = \sup_n |x_n|$ for $x \in c_0$. Show that the dual space c_0^* is isometrically isomorphic to ℓ^1 , the space of summable sequences, equipped with $||y||_1 = \sum_{n=1}^{\infty} |y_n|$ for $y \in \ell^1$.

Problem 4

Let $c_{0,0}$ be the space of real sequences with finitely many non-zero elements. Let for $x = (x_1, x_2, x_3, ...)$ in $c_{0,0}$ its norm be $||x||_{\infty} = \max_n |x_n|$. Define for a fixed $x \in c_{0,0}$ a map $T_x : c_{0,0} \to \mathbb{R}$, $y \mapsto \sum_{n=1}^{\infty} x_n y_n$.

- a. Show that for each x, T_x is continuous, that is, a bounded linear map.
- b. Let $T: c_{0,0} \to c_{0,0}^*$ be defined by $T: x \mapsto T_x$. Show that if $A = \{x \in c_{0,0} : ||x||_{\infty} \le 1\}$, then for each $y \in c_{0,0}$, $\sup_{x \in A} ||T_xy|$ is finite, but T is not uniformly bounded, so $\sup_{x \in A} ||T_x|| = \infty$.