MATH 6360

Applicable Analysis
Fall 2021

First name: \qquad Last name: \qquad

Points:

Assignment 7, due Thursday, October 28, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that for $1 \leq p<s<\infty, \ell^{p} \subset \ell^{s}$ and the inclusion is strict, that is, there is $x \in \ell^{s}$ with $x \notin \ell^{p}$.

Problem 2

Let $\left(x^{(n)}\right)_{n=1}^{\infty}$ be a sequence of elements in ℓ^{1} such that for every $y \in \ell^{\infty}$, the sequence of numbers $\left(\left\langle x^{(n)}, y\right\rangle\right)_{n=1}^{\infty}$ is bounded, where $\langle a, b\rangle=\sum_{k=1}^{\infty} a_{k} b_{k}$. Show that there is $M>0$ with $\left\|x^{(n)}\right\| \leq M$ for each $n \in \mathbb{N}$.

Problem 3

Show that if V is a proper subspace of a normed linear space X (meaning $V \neq X$), then V has empty interior. Hint: Having a non-empty interior means it contains a ball.

Problem 4

Let the "tent" functions be given by $\varphi_{0}^{(-1)}(x)=1, \varphi_{0}^{(0)}(x)=x, \varphi_{0}^{(1)}(x)=\max \{1-|1-2 x|, 0\}$, and for $j \geq 2, \varphi_{k}^{(j)}=\varphi_{0}^{(1)}\left(2^{j-1} x-k\right), k \in\left\{0,1, \ldots, 2^{j-1}-1\right\}$.
a. Draw the graphs of $\varphi_{0}^{(2)}$ and $\varphi_{1}^{(2)}$.
b. Show that if $f \in C([0,1])$ is given by a limit

$$
f=a_{-1,0} \varphi_{0}^{(-1)}+a_{0,0} \varphi_{0}^{(0)}+\lim _{J \rightarrow \infty} \sum_{j=1}^{J} \sum_{k=0}^{2^{j-1}-1} a_{j, k} \varphi_{k}^{(j)}
$$

where the convergence is with respect to d_{∞}, then each coefficient $a_{j, k}$ is uniquely determined. Hint: You may want to define $f_{J}=a_{-1,0} \varphi_{0}^{(-1)}+a_{0,0} \varphi_{0}^{(0)}+\sum_{j=1}^{J} \sum_{k=0}^{2^{j-1}-1} a_{j, k} \varphi_{k}^{(j)}$ and consider what properties the difference $f-f_{J}$ has, for example for which x we have $f(x)-f_{J}(x)=0$.
c. Show that $\left\{\varphi_{k}^{(j)}: j \geq 0,0 \leq k \leq 2^{j-1}-1\right\}$ form a Schauder basis for $C([0,1])$, equipped with d_{∞}. The ordering for the elements in the Schauder basis is hereby assumed to be coming from the index $n=2^{j-1}+k \in \mathbb{N} \cup\{1 / 4,1 / 2\}$, so the elements in the Schauder basis are identified with the sequence $\left(\tilde{\varphi}_{n}\right)$ given by $\tilde{\varphi}_{n} \equiv \varphi_{k}^{(j)}$. Hint: You may quote results from an earlier homework without repeating the proof. Define a sequence of operators $\left(T_{J}\right)_{J=1}^{\infty}$ mapping $f \mapsto T_{J} f=a_{-1,0} \varphi_{0}^{(-1)}+a_{0,0} \varphi_{0}^{(0)}+$ $\sum_{j=1}^{J} \sum_{k=0}^{2^{j-1}-1} a_{j, k} \varphi_{k}^{(j)}$ and appeal to the the uniform boundedness theorem.

