Assignment 9, due Thursday, December 2, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let \(F : C([-1, 1]) \to \mathbb{R} \) be given by \(F(f) = \int_0^1 f(t) \, dt - \int_{-1}^0 f(t) \, dt \) where \(C([-1, 1]) \) is equipped with \(d_\infty \). Let \(Y = \ker F = \{ f \in C([-1, 1]), F(f) = 0 \} \) and \(h(x) = x \), then show that \(\inf_{y \in Y} \| y - h \| = \frac{1}{2} \) but that there is no \(z \in Y \) with \(\| z - h \| = \frac{1}{2} \). Hint: How does \(|F(f)|/\|F\| \) relate to the distance between \(f \) and \(Y \)?

Problem 2

Let \(1 < p, q < \infty \), \(\frac{1}{p} + \frac{1}{q} = 1 \). For \(g \in L^q([a, b]) \), let \(T_g \in (L^p([a, b]))^* \) be given by \(T_g f = \int_{[a, b]} fg \, dx \). Show that \(T : g \mapsto T_g \) is an isometry from \(L^q([a, b]) \) to \((L^p([a, b]))^* \). Hint: It is enough to show this for a dense set, say for all \(g \in C([a, b]) \). You may quote Hölder’s inequality for \(L^p \)-spaces without proof.

Problem 3

Let for \(j \in \mathbb{N}, a < b, x_0 = a, x_1 = a + (b - a)/2^j, \ldots, x_m = a + (b - a)m/2^j, \ldots, x_{2^j} = b \). Let for \(f \in L^p([a, b]) \), \(T_j f(x) = 2^j \int_{[x_k, x_{k+1}]} f \, dx \) where \(x_k \leq x < x_{k+1} \), then as shown in class, \(\|T_j f\|_p \leq \|f\|_p \) and as \(j \to \infty \), \(T_j f \to f \). Show that for \(F \in (L^p([a, b]))^* \), each \(F_j : f \mapsto F(T_j f) \) is a bounded linear functional on \(L^p([a, b]) \) and as \(j \to \infty \), \(F_j \to F \). Hint: It is enough to show the convergence \(F_j f \to F f \) for \(f \) from a dense set.

For the next problem, you may quote the following fact (weak sequential compactness of the closed ball in \(L^q([a, b]) \)): Let \(1 < p, q < \infty \), \(\frac{1}{p} + \frac{1}{q} = 1 \). If \((f_j)_{j=1}^\infty \) is a bounded sequence in \(L^q([a, b]) \), so there is \(M > 0 \) such that for each \(j \in \mathbb{N}, \|f_j\|_q \leq M \), then there is a subsequence \((f_{j_n})_{n=1}^\infty \) and \(f \in L^q([a, b]) \) such that for each \(g \in L^p([a, b]) \), as \(n \to \infty \), \(\int_{[a, b]} g f_{j_n} \, dx \to \int_{[a, b]} g f \, dx \).

Problem 4

Show that the isometry \(T : g \mapsto T_g \) from \(L^q([a, b]) \) to \((L^p([a, b]))^* \) is onto.