MATH 6360

Applicable Analysis

Fall 2021

First name: \qquad Last name: \qquad

Points:

Assignment 9, due Thursday, December 2, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $F: C([-1,1]) \rightarrow \mathbb{R}$ be given by $F(f)=\int_{0}^{1} f(t) d t-\int_{-1}^{0} f(t) d t$ where $C([-1,1])$ is equipped with d_{∞}. Let $Y=\operatorname{ker} F=\{f \in C([-1,1]), F(f)=0\}$ and $h(x)=x$, then show that $\inf _{y \in Y}\|y-h\|=\frac{1}{2}$ but that there is no $z \in Y$ with $\|z-h\|=\frac{1}{2}$. Hint: How does $|F(f)| /\|F\|$ relate to the distance between f and Y ?

Problem 2

Let $1<p, q<\infty, \frac{1}{p}+\frac{1}{q}=1$. For $g \in L^{q}([a, b])$, let $T_{g} \in\left(L^{p}([a, b])\right)^{*}$ be given by $T_{g} f=\int_{[a, b]} f g d x$. Show that $T: g \mapsto T_{g}$ is an isometry from $L^{q}([a, b])$ to $\left(L^{p}([a, b])\right)^{*}$. Hint: It is enough to show this for a dense set, say for all $g \in C([a, b])$. You may quote Hölder's ineqality for L^{p}-spaces without proof.

Problem 3

Let for $j \in \mathbb{N}, a<b, x_{0}=a, x_{1}=a+(b-a) / 2^{j}, \ldots, x_{m}=a+(b-a) m / 2^{j}, \ldots, x_{2^{j}}=b$. Let for $f \in L^{p}([a, b]), T_{j} f(x)=2^{j} \int_{\left[x_{k}, x_{k+1}\right]} f d x$ where $x_{k} \leq x<x_{k+1}$, then as shown in class, $\left\|T_{j} f\right\|_{p} \leq\|f\|_{p}$ and as $j \rightarrow \infty, T_{j} f \rightarrow f$. Show that for $F \in\left(L^{p}([a, b])\right)^{*}$, each $F_{j}: f \mapsto F\left(T_{j} f\right)$ is a bounded linear functional on $L^{p}([a, b])$ and as $j \rightarrow \infty, F_{j} \rightarrow F$. Hint: It is enough to show the convergence $F_{j} f \rightarrow F f$ for f from a dense set.

For the next problem, you may quote the following fact (weak sequential compactness of the closed ball in $L^{q}([a, b])$: Let $1<p, q<\infty, \frac{1}{p}+\frac{1}{q}=1$. If $\left(f_{j}\right)_{j=1}^{\infty}$ is a bounded sequence in $L^{q}([a, b])$, so there is $M>0$ such that for each $j \in \mathbb{N},\left\|f_{j}\right\| \leq M$, then there is a subsequence $\left(f_{j_{n}}\right)_{n=1}^{\infty}$ and $f \in L^{q}([a, b])$ such that for each $g \in L^{p}([a, b])$, as $n \rightarrow \infty, \int_{[a, b]} g f_{j_{n}} d x \rightarrow \int_{[a, b]} g f d x$.

Problem 4

Show that the isometry $T: g \mapsto T_{g}$ from $L^{q}([a, b])$ to $\left(L^{p}([a, b])\right)^{*}$ is onto.

