The Inverse Function Theorem

The Inverse Function Theorem says that if X and Y are Banach spaces
and U C X, F:U — Y is C! and DF(x0) is invertible, then in a small
neighborhood of x(, the function F' is one-to-one, so that an inverse function
G exists and that inverse function is also C'! on some neighborhood of F(xy).

The following two lemmas use the operator norm to guarantee the in-
vertibility of an operator-valued function. Roughly, the first one says that
if a bounded linear operator is close enough to an invertible operator, then
it is also invertible. The second lemma states that if a continuous operator-
valued function has values that are invertible (operators), then the map to
the inverses is also continuous.

Lemma 1. Let T, S : X — Y be linear maps between Banach spaces X to

Y. If T is (boundedly) invertible and ||T — S| < ﬁ, then S is invertible.

Proof. Let G = T71 + 3%, T71((T — S)T~1)" then by assumption the
series on the right converges in operator norm, because |T-1(T — 9)| <
IT=YIT — S|| < 1. We show that the bounded linear operator G is the
inverse of S.

With G as defined, it can be verified that

G=T'1+T7YT - 9)G.
Consequently, left multiplying by T" gives
TG=1+4+(T-9)G

from which we get 0 = I — SG, so G is a right inverse to S. Similarly,
G =T71 4+ G(T — S)T~! yields that G is a left inverse of S. d

Lemma 2. Let T : U — B(X,Y), be a map from an open subset U C X of
a Banach space X to B(X,Y), the space of bounded operators mapping X
to a Banach space Y such that T is continuous with respect to the norms on
X and B(X,Y), and for each u € U, T(u) has a bounded inverse (T (u))™1,
then S : U — B(Y, X),S(u) = (T(u))~! is continuous.

Proof. We know from the preceding lemma that for each x,u € U with
: 1
Iz =l < sz

[o.e]

S(@) = (T(w)™" + Y (T(w) " (T(u) - T(@)(T(w) )"
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and the convergence is uniform in B, (u) with r = so S is con-
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tinuous at each v € U. O

Theorem 3 (Inverse Function Theorem). Let U C X be an open subset of
a Banach space X, let xg € U, and let F : U =Y be C* on U. If DF (xq) is
tnvertible, then

a. there exist open sets V and W in U and Y, respectively, such that the
restriction F|y is a homeomorphism from V to W,

b. if G = F~! denotes the inverse function, then G is C' on W and
G'(y) = (F')~1(G(y)).

Proof. 1t is enough to show this for the special case zo = F(x¢) = 0, other-
wise we shift the domain and values of F' by appropriate constants.

Let for o = 0, L = DF(0) and fix a number A, 0 < A < 1.
Step 1. Compare F with its linearization. From F' being continuously dif-
ferentiable, we can choose p > 0 such that for all z € B,(0),

A

Di(E) — Lf| 52—

Let H(z) = F(x) — Lz, then for 2 € B,(0), by a consequence of the mean-
value theorem and the assumption F(0) = 0 = L0,

A
1H (@) = |F(z) - La|| < =y llll -
1L~
More generally, we have for x1,z2 € B,(0),
A
[ H (x2) — H(z1)] < mllxz -z

Step 2. Invert F using a contraction mapping. Next, we claim that if
ly|| <r= H, then there is a unique z € B,(0) with F(z) = y. This will
be established with the help of the Contraction Mapping Theorem. To this

end we define a function @, : B,(0) — X by
®y(z) =L (y— H(z)) =2+ L7} (y - F()).

From the definition of ®,, we have ®,(z) = z if and only if F(z) = y.
Using the bound for |H(x)|| and the triangle inequality, for z € B,(0)
and y € B,(0)

12y ()]l < Allzll + 1L Iyl < Azl + 1271

2



Choosing A < 1/2 and p as above and r < p/(2||L™!||) then implies that ®,
maps Ep to Ep.

Moreover, given x1, T € Fp, integrating ¢'(t) = DF(x1+t(x2—x1))(x2—
x1) we have by the Fundamental Theorem of Calculus

1
F(x2) — F(x1) = /0 DF(z1 + t(x2 — x1)) (22 — z1)dt

which implies
1
19,(a2) = @ @)l < L)Ltz —20) = [ et

1
<Y /O 1 (8) = L(wa — 1) dt
and again by the continuity of DF’,
1@, (22) — @y (x1)]| < A2z — 1]l

Thus, ®, is a contraction mapping that recovers x = F’ ~1(y) as its unique
fixed point.
From this, we conclude that the map G : y — F~!(y) is one-to-one when
we restrict its domain to B, (0).
Step 3. Show F restricts to a homeomorphism. Next, we show G is conti-
nous, which proves that F': V — W is a homeomorphism with V = F~1(W¥)
and W = B,.(0). By definition, given y1,ys € B,(0), we have unique z; with
F(z;) = yi and
1G(y2) = G(y)|| = llzz — 1|
= [[ @y, (x2) — By, (21)]
< 1L Mlyz — H(z2) — y1 + H(a1)|
<L Hllyz = wull + Allez — a1
-1
=1L [lly2 — w1l + A G(y2) — G(y)l

from which we get Lipschitz continuity,

1 e
1G(y2) — G(y1)l| < IT”L iy = wall-

Finally, we show G is C'. We know for y,y + h € B,(0),
h=F(G(y+h)) — F(G(y))

1
- /O DF(G(y) +H(G(y + h) — G(y)))dt(Gly + h) — G(y)).



Let Lg(y,) = DF(G(y)). Applying La(ly) to both sides yields

G(y+h) —G(y) = Lg,,h+ R

with
g 1
R=Lg, /0 (Law) = Law)ri@yrn-cr)) 4Gy +h) — G(y)) .-

By the continuity of G and F being C!, the integrand can be made arbi-
trarily small for sufficiently small ||h||. Hence, we have

IG(y + ) = G(y) = Lgg,hll
([~

which shows that G is differentiable, and that the derivative of G is DG(y) =
Lz} = (DF(G()™.

Gly) ~
Now applying the preceding lemma to the function T : u — L, gives
that S : u+ (L,)~! is continuous, and so is DG : y Lab}). O



