The Inverse Function Theorem

The Inverse Function Theorem says that if X and Y are Banach spaces and $U \subseteq X$, $F: U \to Y$ is C^1 and $DF(x_0)$ is invertible, then in a small neighborhood of x_0 , the function F is one-to-one, so that an inverse function G exists and that inverse function is also C^1 on some neighborhood of $F(x_0)$.

The following two lemmas use the operator norm to guarantee the invertibility of an operator-valued function. Roughly, the first one says that if a bounded linear operator is close enough to an invertible operator, then it is also invertible. The second lemma states that if a continuous operator-valued function has values that are invertible (operators), then the map to the inverses is also continuous.

Lemma 1. Let $T, S: X \to Y$ be linear maps between Banach spaces X to Y. If T is (boundedly) invertible and $||T - S|| < \frac{1}{||T^{-1}||}$, then S is invertible.

Proof. Let $G = T^{-1} + \sum_{n=1}^{\infty} T^{-1} ((T-S)T^{-1})^n$ then by assumption the series on the right converges in operator norm, because $||T^{-1}(T-S)|| \le ||T^{-1}|| ||T-S|| < 1$. We show that the bounded linear operator G is the inverse of S.

With G as defined, it can be verified that

$$G = T^{-1} + T^{-1}(T - S)G$$
.

Consequently, left multiplying by T gives

$$TG = I + (T - S)G$$

from which we get 0 = I - SG, so G is a right inverse to S. Similarly, $G = T^{-1} + G(T - S)T^{-1}$ yields that G is a left inverse of S.

Lemma 2. Let $T: U \to B(X,Y)$, be a map from an open subset $U \subset X$ of a Banach space X to B(X,Y), the space of bounded operators mapping X to a Banach space Y such that T is continuous with respect to the norms on X and B(X,Y), and for each $u \in U$, T(u) has a bounded inverse $(T(u))^{-1}$, then $S: U \to B(Y,X)$, $S(u) = (T(u))^{-1}$ is continuous.

Proof. We know from the preceding lemma that for each $x, u \in U$ with $||x - u|| \le \frac{1}{2||(T(u))^{-1}||}$,

$$S(x) = (T(u))^{-1} + \sum_{n=1}^{\infty} (T(u))^{-1} ((T(u) - T(x))(T(u))^{-1})^n$$

and the convergence is uniform in $B_r(u)$ with $r = \frac{1}{2\|(T(u))^{-1}\|}$, so S is continuous at each $u \in U$.

Theorem 3 (Inverse Function Theorem). Let $U \subseteq X$ be an open subset of a Banach space X, let $x_0 \in U$, and let $F: U \to Y$ be C^1 on U. If $DF(x_0)$ is invertible, then

- a. there exist open sets V and W in U and Y, respectively, such that the restriction $F|_{V}$ is a homeomorphism from V to W,
- b. if $G = F^{-1}$ denotes the inverse function, then G is C^1 on W and $G'(y) = (F')^{-1}(G(y))$.

Proof. It is enough to show this for the special case $x_0 = F(x_0) = 0$, otherwise we shift the domain and values of F by appropriate constants.

Let for $x_0 = 0$, L = DF(0) and fix a number λ , $0 < \lambda < 1$.

Step 1. Compare F with its linearization. From F being continuously differentiable, we can choose $\rho > 0$ such that for all $x \in B_{\rho}(0)$,

$$||DF(x) - L|| \le \frac{\lambda}{||L^{-1}||}.$$

Let H(x) = F(x) - Lx, then for $x \in B_{\rho}(0)$, by a consequence of the mean-value theorem and the assumption F(0) = 0 = L0,

$$||H(x)|| = ||F(x) - Lx|| \le \frac{\lambda}{||L^{-1}||} ||x||.$$

More generally, we have for $x_1, x_2 \in B_{\rho}(0)$,

$$||H(x_2) - H(x_1)|| \le \frac{\lambda}{||L^{-1}||} ||x_2 - x_1||.$$

Step 2. Invert F using a contraction mapping. Next, we claim that if $\|y\| < r \equiv \frac{(1-\lambda)\rho}{\|L^{-1}\|}$, then there is a unique $x \in \overline{B}_{\rho}(0)$ with F(x) = y. This will be established with the help of the Contraction Mapping Theorem. To this end we define a function $\Phi_y : \overline{B}_{\rho}(0) \to X$ by

$$\Phi_{y}(x) = L^{-1}(y - H(x)) = x + L^{-1}(y - F(x)).$$

From the definition of Φ_y , we have $\Phi_y(x) = x$ if and only if F(x) = y.

Using the bound for ||H(x)|| and the triangle inequality, for $x \in B_{\rho}(0)$ and $y \in B_r(0)$

$$\|\Phi_y(x)\| \leq \lambda \|x\| + \|L^{-1}\| \|y\| \leq \lambda \|x\| + \|L^{-1}\| r \,.$$

Choosing $\lambda < 1/2$ and ρ as above and $r \leq \rho/(2||L^{-1}||)$ then implies that Φ_y maps \overline{B}_{ρ} to \overline{B}_{ρ} .

Moreover, given $x_1, x_2 \in \overline{B}_{\rho}$, integrating $\varphi'(t) = DF(x_1 + t(x_2 - x_1))(x_2 - x_1)$ we have by the Fundamental Theorem of Calculus

$$F(x_2) - F(x_1) = \int_0^1 DF(x_1 + t(x_2 - x_1))(x_2 - x_1)dt$$

which implies

$$\|\Phi_y(x_2) - \Phi_y(x_1)\| \le \|L^{-1}\| \|L(x_2 - x_1) - \int_0^1 \varphi'(t)dt\|$$

$$\le \|L^{-1}\| \int_0^1 \|(\varphi'(t) - L(x_2 - x_1)\|dt$$

and again by the continuity of DF,

$$\|\Phi_y(x_2) - \Phi_y(x_1)\| \le \lambda \|x_2 - x_1\|.$$

Thus, Φ_y is a contraction mapping that recovers $x=F^{-1}(y)$ as its unique fixed point.

From this, we conclude that the map $G: y \mapsto F^{-1}(y)$ is one-to-one when we restrict its domain to $B_r(0)$.

Step 3. Show F restricts to a homeomorphism. Next, we show G is continous, which proves that $F: V \to W$ is a homeomorphism with $V = F^{-1}(W)$ and $W = B_r(0)$. By definition, given $y_1, y_2 \in B_r(0)$, we have unique x_i with $F(x_i) = y_i$ and

$$||G(y_2) - G(y_1)|| = ||x_2 - x_1||$$

$$= ||\Phi_{y_2}(x_2) - \Phi_{y_1}(x_1)||$$

$$\leq ||L^{-1}|| ||y_2 - H(x_2) - y_1 + H(x_1)||$$

$$\leq ||L^{-1}|| ||y_2 - y_1|| + \lambda ||x_2 - x_1||$$

$$= ||L^{-1}|| ||y_2 - y_1|| + \lambda ||G(y_2) - G(y_1)||$$

from which we get Lipschitz continuity,

$$||G(y_2) - G(y_1)|| \le \frac{1}{1-\lambda} ||L^{-1}|| ||y_2 - y_1||.$$

Finally, we show G is C^1 . We know for $y, y + h \in B_r(0)$,

$$h = F(G(y+h)) - F(G(y))$$

= $\int_0^1 DF(G(y) + t(G(y+h) - G(y)))dt(G(y+h) - G(y)).$

Let $L_{G(y)} = DF(G(y))$. Applying $L_{G(y)}^{-1}$ to both sides yields

$$G(y+h) - G(y) = L_{G(y)}^{-1}h + R$$

with

$$R = L_{G(y)}^{-1} \int_0^1 \left(L_{G(y)} - L_{G(y)+t(G(y+h)-G(y))} \right) dt \left(G(y+h) - G(y) \right).$$

By the continuity of G and F being C^1 , the integrand can be made arbitrarily small for sufficiently small ||h||. Hence, we have

$$\frac{\|G(y+h) - G(y) - L_{G(y)}^{-1}h\|}{\|h\|} \to 0$$

which shows that G is differentiable, and that the derivative of G is DG(y) =

 $L_{G(y)}^{-1} = (DF(G(y)))^{-1}.$ Now applying the preceding lemma to the function $T: u \mapsto L_u$ gives that $S: u \mapsto (L_u)^{-1}$ is continuous, and so is $DG: y \mapsto L_{G(y)}^{-1}.$