MATH 6361
 Applicable Analysis
 Spring 2022

First name: \qquad Last name: \qquad

Points:

Assignment 5, due Thursday, March 3, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let T be the operator on ℓ^{2} defined by $(T x)_{k}=x_{k} / k$. Show that if $\left(x^{(n)}\right)_{n=1}^{\infty}$ is a sequence in ℓ^{2} that converges weakly to 0 , then $T x^{(n)} \rightarrow 0$ in norm. Hint: Quote known results about such a sequence $\left(x^{(n)}\right)_{n=1}^{\infty}$ in ℓ^{2}.

Problem 2

Define a simple real Sobolev-type space

$$
H=\left\{f \in C([-1,1]): f(x)=\int_{[-1, x]} g d t \text { for } x \in[-1,1], g \in L^{2}([-1,1]), f(1)=0\right\}
$$

equipped with the inner product

$$
\langle f, g\rangle=\int_{[-1,1]} f^{\prime} g^{\prime} d t
$$

and the corresponding norm. Show that the linear functional $F: H \rightarrow \mathbb{R}$ defined by

$$
F(f)=f(0)
$$

is bounded. What is the unique function $h \in H$ guaranteed by the Riesz representation theorem satisfying for each $f \in H$ that $F(f)=\langle f, h\rangle$? Hint: Fundamental theorem of calculus.

Problem 3

Let $\epsilon>0$ and

$$
T_{\epsilon}=\left(\begin{array}{ll}
0 & 1 \\
\epsilon & 0
\end{array}\right)
$$

define an operator on the Hilbert space \mathbb{C}^{2}, equipped with the standard inner product $\langle x, y\rangle=$ $x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}$. Find the operator norm of T_{ϵ} and compare with $\max _{\|x\| \leq 1}\left|\left\langle T_{\epsilon} x, x\right\rangle\right|$. Find T_{ϵ}^{-1}, compute its operator norm and compare with $\delta=\min _{\|x\|=1}\left|\left\langle T_{\epsilon} x, x\right\rangle\right|$.

Problem 4

The numerical range of an operator T on a Hilbert space H is the set $\rho(T)=\{\langle T x, x\rangle,\|x\|=1\}$. If T is bounded, linear and self-adjoint (meaning for $x, y \in H,\langle T x, y\rangle=\overline{\langle T y, x\rangle}$) and $\rho_{1}=\langle T x, x\rangle<$ $\rho_{2}=\langle T y, y\rangle$ with $\|x\|=\|y\|=1$, then show $\left[\rho_{1}, \rho_{2}\right] \subset \rho(T)$. Hint: Consider the values of the quadratic form associated with T restricted to $(1-t) x+t y, t \in[0,1]$.

