MATH 6361
Applicable Analysis
Spring 2022

First name: \qquad Last name: \qquad

Points:

Assignment 6, due Thursday, March 24, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that if A is a bounded, self-adjoint linear operator on a complex Hilbert space H and I the identity operator, then $T_{\alpha}=I+i \alpha A$ with $\alpha \in \mathbb{R}$ has a bounded inverse with norm $\left\|T_{\alpha}^{-1}\right\| \leq 1$.

Problem 2

Let T be the operator on $L^{2}([-1,1])$ defined by

$$
T f(x)=\int_{[-1,1]}(x-y) f(y) d y
$$

Show that T is a Hilbert-Schmidt operator and compute its Hilbert-Schmidt norm $\|T\|_{H S}$. Hint: Consider an orthonormal basis of polynomials $\{1 / \sqrt{2}, x / \sqrt{2 / 3}, \ldots\}$.

Problem 3

Recall that an operator is of rank m if its range is m-dimensional. Show that any Hilbert-Schmidt operator T on ℓ^{2} can be approximated in operator norm by a finite-rank operator, so for any $\epsilon>0$, there is $m \in \mathbb{N}$ and an operator S of rank m on ℓ^{2} such that $\|S-T\|<\epsilon$. Hint: Consider the canonical basis $\left(e_{n}\right)_{n=1}^{\infty}$ and define T_{m} for $m \in \mathbb{N}$ by

$$
T_{m} x=\sum_{n=1}^{m} e_{n}\left\langle T x, e_{n}\right\rangle
$$

Problem 4

If T is a bounded linear operator on a Hilbert space, prove that

$$
\left\|T T^{*}\right\|=\left\|T^{*} T\right\|=\|T\|^{2}
$$

