MATH 6361

Applied Analysis

Spring 2022

First name: \qquad Last name: \qquad

Points:

Assignment 9, due Thursday, April 28, 11:30am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let H be a real Hilbert space and K be a non-empty, convex, closed and bounded set and $x \notin K$. Show that there exists a bounded linear functional f such that $\inf _{y \in K} f(y)>f(x)$. Hint: First treat the special case $x=0$. Recall that there is an element in K which minimizes the norm.

Problem 2

Consider ℓ^{2} as a real Hilbert space, containing each square-summable sequence $x=\left(x_{1}, x_{2}, \ldots\right)$. Consider the sets

$$
A=\left\{x \in \ell^{2}: k\left|x_{k}-k^{-2 / 3}\right| \leq x_{1} \text { for each } k \in \mathbb{N}\right\}
$$

and

$$
B=\left\{x \in \ell^{2}: x_{k}=0 \text { if } k \geq 2\right\} .
$$

a. Prove that A and B are closed convex sets and that $A \cap B=\emptyset$.
b. Show that $A-B=\left\{x \in \ell^{2}\right.$: there is $C \geq 0$ such that $k\left|x_{k}-k^{-2 / 3}\right| \leq C$ for each $\left.k \geq 2\right\}$.
c. Use the preceding result to show that $A-B$ is dense in ℓ^{2}.
d. Prove that A and B cannot be separated by a bounded linear functional.

Problem 3

Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbb{R}$, and let $\epsilon=\min \left\{\left|x_{i}-x_{j}\right|: i \neq j\right\}$. Suppose that there is a function $F: \mathbb{R} \rightarrow$ $\{+1,-1\}$ that is onto. For $\lambda>0$ and each $j \in\{1,2, \ldots, n\}$, define $f_{j} \in L^{2}(\mathbb{R})$ by

$$
f_{j}(y)=\frac{1}{2 \lambda} e^{-\left|y-x_{j}\right| / \lambda} .
$$

Consider for each x_{j} the half-open interval $I_{j}=\left[x_{j}-\epsilon / 2, x_{j}+\epsilon / 2\right.$), and form the linear combination of characteristic/indicator functions of these half-open intervals

$$
g(x)=\sum_{j=1}^{n} F\left(x_{j}\right) \chi_{I_{j}}(x),
$$

which defines a bounded linear functional G on $L^{2}(\mathbb{R})$ by $G(f)=\int_{\mathbb{R}} f(x) g(x) d x$. Show that if $\lambda<\epsilon /(2 \ln 2)$, then for each $j, G\left(f_{j}\right)>0$ if $F\left(x_{j}\right)=1$ and $G\left(f_{j}\right)<0$ if $F\left(x_{j}\right)=-1$.

