
Stochastic Processes - Spring 2008

Bernhard Bodmann, PGH 636
Exercise Sheet 2, with Solutions

Do all Exercises individually.

(1) Let X1, X2, . . . , Xn, . . . be i.i.d. with P(Xi = 1) = p and P(Xi = −1) =
1− p = q. Let a, b ∈ N. Define Sn = X1 + . . .+Xn and S0 = 0, and let

T (ω) = inf{n : Sn(ω) = −a or b} .

Use a stopping time argument to compute the expected value E[T ].
Solution. Define Yn = Sn−n(p− q) and Zn = ( q

p
)Sn . It is straightforward to

show that Yn and Zn are martingales. Define a stopping time

T = min{n : Sn = −a or Sn = b}

By Doob’s stopping time theorem E[ZT ] = E[Z0] = 1. Let Pa be the proba-
bility that the random walk reaches −a before b. Then

1 = Pa

(
q

p

)−a
+ (1− Pa)

(
q

p

)b
Solving for Pa gives

Pa =

((
q

p

)a
−
(
q

p

)b+a)/(
1−

(
q

p

)b+a)
Since Yn is also a martingale E[YT ] = 0 so E[ST ]− (p− q)E[T ] = 0. Thus

E[T ] =
E[ST ]

p− q

=
b− (a+ b)Pa

p− q
where Pa is as above.

(2) Let {X1, X2, . . .} be a sequence of i.i.d. real-valued random variables
having finite expectation, and N be a stopping time for the discrete filtration
generated by {Xn}∞n=1 such that E[N ] <∞.
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(a) Why is E[Xn1n≤N ] = E[Xn]P[{ω : N(ω) ≥ n}] for each n ∈ N?
Solution. The event {N ≥ n} is in the sigma-field Fn−1, because the com-
plement {N < n} = {N ≤ n− 1} is. Now, since Xn is independent of Fn−1,
the expectation factorizes.
(b) Using the previous step, prove

E[
N∑
n=1

Xn] = E[N ]E[X1] .

Solution. By inserting the indicator function, we can change the limit of the
series,

E[
N∑
n=1

Xn] = E[
∞∑
n=1

Xn1n≤N ] .

Exchanging the summation with the expectation gives

E[
N∑
n=1

Xn] =
∞∑
n=1

E[Xn1n≤N ] =
∞∑
n=1

E[Xn]P[N ≥ n] .

Using the fact that all Xn are identically distributed (so they have the same
expected value) and a counting argument which shows

∑∞
n=1 P[N ≥ n] =

E[
∑∞

n=1 1N≥n] = E[N ], we obtain

E[
N∑
n=1

Xn] = E[X1]E[N ] .

(3) Suppose that two candidates run for election. Candidate A obtains a
votes and Candidate B obtains b < a votes. Suppose n = a + b is the total
number of votes cast. Let Sk be the number of votes by which Candidate A
is leading after k votes are counted (Sk can be positive or negative) so that
Sn = a− b. For 0 ≤ k ≤ n− 1 define

Xk =
Sn−k
n− k

(a) Show that X0, X1, . . . , Xn−1 forms a martingale.
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Solution. Suppose Sn−k = t i.e. Xk = t
n−k . If γa is the number of votes

counted for Candidate A at time n − k and γb the number counted for B
then γa + γb = n − k and γa − γb = t. Solving we get γa = n−k+t

2
, γb =

n−k−t
2

. Going to Xk+1 is the same as removing one vote from the counted
votes at time n − k to get the number and type of votes counted at time
n−k−1. Thus E[Sn−k−1|Sn−k] = γa

γa+γb
(t−1)+ γb

γa+γb
(t+1) = t(n−k−1)

n−k . Thus

E[Xk+1|X0, . . . , Xk] = Xk.
(b) Let

T = min{k : Xk = 0}

if such a k exists and T = n− 1 otherwise. Show that T is a stopping time.
Solution. Let T = min{n − 1, k such that Xk = 0}. Then we only have to
show {T = n} ∈ Fn. This is clear because the set {T = n} is given by the
intersection of the sets {Xk 6= 0} for k ≤ n− 1 and the set {Xn = 0}, which
are all in Fn.
(c) Show that the probability that Candidate A leads throughout the count
is a−b

a+b
.

Solution. By Doob’s stopping theorem, E[XT ] = γ = (a − b)/n where γ
is the probability that Candidate A leads all the way in the count. Hence
γ = (a − b)/(a + b). Note that in the equation for E[XT ] we used the fact
that if S1 = −1 then T < n− 1.

(4) Let T be the first time a standard Brownian motion crosses the line l(t) =
βt − α, (α > 0, β > 0). Determine the characteristic (moment generating)
function of T and hence find the expected value of T . Hint: Use a martingale
method.
Solution. Let T = min{t : Bt(ω) = βt − α}. The random variable T is a
stopping time as {T ≤ t} ∈ σ(Bs : 0 ≤ s ≤ t).

Let Vt = eλBt− 1
2
λ2t, with a fixed parameter λ ≥ 0. It is straightforward to

verify that Vt is a martingale. It is not so easy that T satisfies the conditions
of Doobs martingale theorem but we will assume they are satisfied and apply
the stopping time theorem to yield

E[eλ(βT−α)− 1
2
λ2T ] = 1

= E[e−λα+T (λβ− 1
2
λ2)]
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Let z = λβ − 1
2
λ2 so that 1 = e−λαE[ezT ] which gives E[ezT ] = eλα where

λ = β −
√
β2 − 2z (branch chosen to give λ = z = 0). Differentiating at

z = 0 gives E[T ] = α/β.

(5) Give an expression for the probability that standard Brownian motion,
starting at x = 2 at time t = 0 i.e. B0 = 2, satisfies Bt < −1 for some
0 ≤ t ≤ 3. Evaluate this expression numerically.

We consider instead a standard BM Wt starting at 0 and ask P (Wt ≤ −3)
for some 0 ≤ t ≤ 3. Now P (Wt ≤ −3) = P (−Wt ≥ 3) for some 0 ≤ t ≤ 3.
But −Wt is also a standard BM. Hence by reflection principle P (−Wt ≥ 3) =

2√
6π

∫∞
3
e−x

2/6dx.

(6) Suppose that {Bt} and {Wt} are independent standard Brownian motions
(starting at zero), and let ρ ∈ [0, 1] be a constant. Is the process Xt =
ρBt +

√
1− ρ2Wt a standard Brownian motion? Justify your answer!

Solution. Since both Bt and Wt are Gaussian processes, so is Xt. Moreover,
the linear combination of continuous processes is continuous and the expected
value is zero. It remains to check the covariance. By the independence of
Wt and Bt, we can drop the mixed terms and obtain the desired covariance
function

E[XtXs] = ρ2E[BtBs] + (1− ρ2)E[WtWs] = min{s, t} .
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