Information Theory with Applications, Math6397
Lecture Notes from August 26, 2014

taken by Bernhard G. Bodmann

0 Course Info

0.1 Syllabus

Instructor: Bernhard Bodmann, bgb@math.uh.edu
Office: PGH 604, (ph) 713 743 3581
Hours: Mo, We 1:30-2:30pm

Texts: A. I. Khinchin, Mathematical Foundations of Information Theory, Dover, 2001, reprint
of 1957 edition (approx. $10); optional texts: T. S. Han and K. Kobayashi, Mathematics
of Information and Coding, Translations of mathematical monographs, v. 203, American
Mathematical Society, 2002 (approx. $80 for AMS members); |. Csiszar and J. Korner,
Information Theory, 2nd edition, Cambridge University Press, Cambridge, 2011 (approx.
$100).

Homework and grade: Course notes taken by students in LaTeX, up to 4 homework sets with

elementary problems, also including group projects that involve small programming tasks
in Matlab.

Goal: Understand and apply principles of information theory

0.2 Background knowledge

0.2.1 Definition. A probability space (€2, F,P) consists of a set of outcomes €, a o-algebra F’
containing subsets of {2 which are called events, and a probability measure P that associates with
each event of F' a probability. A random variable X is a map X : 2 — A C R, with A called
the alphabet. A stochastic process is a map X : (2 x Z — A C R, where the second argument
is often thought of as a (discrete) time. A random variable or a stochastic process induce a
probability measure on subsets of the alphabet or subsets of sequences from the alphabet. This
induced measure is written as Py.

The shift operator 7 applied to a sequence of outcomes acts by 7(. .., w_s,w_1,wp, w1, ...) =
(...,w_1,wp, w1, ws,...) and it applies to an event A by 7(A) = {7(w) : w € A}. An event A



is called shift invariant if 7(A) = A. A process X is called stationary if Px(A) = Px(7(A)) for
all events A in the o-algebra. A process X is called ergodic if each A for which 7(A) = A has
probability Px(A) € {0, 1}.

Ergodicity

Later, we will see that ergodic processes have a nice property that relates averages over the
probability space to averages over all shifts of one outcome, Birkhoff's ergodic theorem.

Convergence

When considering sequences of random variables, we distinguish pointwise convergence, almost-
sure convergence (with probability one), and convergence in distribution. We will recall the weak
and the strong laws of large numbers, and the central limit theorem.

Inequalities

Among the inequalities used in this course are the Holder, Minkowski, Jensen and Chebyshev
inequalities.

1 Basics of Information Theory

A brief history

Information theory is the science related to the storage and transmission of data. Many outstand-
ing researchers contributed to this field over the years.

e Shannon (1948)

— channel coding (reliable transmissions)

— source coding (compression)

Huffman (1952) compression

Kolmogorov (1965) and Chaitin (1966) complexity and algorithmic information theory

Amari (1985) geometric formulation of information theory

Slepian and Wolf (1973) correlated data streams

Han and Kobayashi (1980's) multiterminal information systems (internet)

Holevo (1973) quantum transmissions



1.1 Entropy

In Shannon's words, information is “anything previously uncertain”. A quantitative measure for
uncertainty, a lack of knowledge, is entropy.

1.1.1 Definition. Let (2, F,P) be a probability space. Given a random variable X : Q — A,
whose alphabet A is at most countable, and the induced probability measure Px on A, we write
H(X)=H(Px) = — ) _Px(a)logPx(a)

acA

for the entropy of X, with the convention 0log0 = 0.

Entropy is said to measure the uncertainty inherent in Px. Usually, we will choose the
natural logarithm, which corresponds to measuring information in nats, as opposed to the binary
logarithm, which measures information in bits.

We compile elementary properties of H.

e H(X) >0, because for each a € A, 0 <Px(a) <1and —tlnt >0 for all t € [0,1].

e H(X) = 0 is equivalent to the existence of some a € A such that Px(a) = 1, because
tInt = 0 if and only if ¢ € {0, 1}, but then one and only one outcome can have probability
one, because >, Px(a) = 1.

e Forall A € [0,1], X,Y A-valued random variables,

This is because f : t — —tInt is concave on [0,00), so f(Ap1 + (1 — N)p2) > Af(p1) +
(1 —=X)f(p2). Inserting this for each term in the expression for H(APx + (1 — \)Py) gives

=Y (APx + (1 = MPy) In(APx + (1 = A)Py) > = > (APx InPx + (1 — A\)Py InPy)

a€A a€A

and after splitting the sum and factoring out A or 1 — ), the desired inequality emerges.

e H(X) can be infinite for some X, e.g. for Px(a) = afmayz Where ¢ is chosen so that
Y aca Px(a) = 1. Showing this is an exercise with the integral comparison criterion.

The third property means that if we randomly select among two sources of information, with
probabilites A and 1 — )\, then the entropy of the resulting distribution is at least as big as the
weighted average of the individual entropies: Mixing can only create entropy.

1.1.1 Binary entropy
In the simplest case, X : Q2 — {0,1}, Px(0) =p, 0 < p <1, and then
H(X) =—php—(1—-p)In(l —p).

We see that this is symmetric with respect to reflections about p = 1/2 and has its maximum at
p=1/2.



1.1.2 Entropy of joint distributions

1.1.2 Definition. Let (2, F,P) be a probability space. Given two random variables X : Q —
Aand Y : Q@ — B, we denote by Pxy the probability measure for their joint distribution,
Pxy(a,b) =P(X =a and Y = b). Later, we use a similar notation for more than two random
variables. We write

H(X,Y)=— > Pxy(a,b)logPxy(a,b).

ach,beB
The conditional probability of Y given X = a is

Pxy(a,b)/P(X =a), fP(X=a)#0
0, else

W(bla) = {
which relates to the conditional probability by Py y(a,b) = P(X = a)W(bla),a € A,b € B.

1.1.3 Definition. For a € A, the entropy of W(:|A) is written as

H(Y|a) ==Y W(bla) InW(ba).

beB

1.1.4 Question. What do we expect from a notion of conditional entropy? Could H(Y |a) serve
this role?



