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2 previous notes continued

2.1 Warm-Up

2.1.1 Question. Recall the definition of mutual information.

H(X) H(Y)

The mnemonic device using Venn diagrams shows you several ways to write it:
I(X;Y)=H(X)—- H(X|Y)

(Y) = H(Y]X)
(X)+H(Y)- H(X,Y)

T =

We are going to examine another form of data processing for Markov chains. As you move
along in the Markov Chain, the only thing that can happen is you lose information. So as time
progresses you might be forgetting things and mutual information between the inital and current
state goes down. We only really need to look at three moments in time because we are comparing

between an intitial point in time, an intermediate time, and a final time.

2.2 A Data Processing Inequality for Markov Chains

2.2.2 Proposition. Given a Markov chain consisting of three discrete r.v.’s {X,Y, Z} (ordered

in sequence of “time"), then I(X;Y) > I(X : Z).



Proof. We use the property that if | condition ona random variable at the intermediate time (in
this case Y), then X and Z are independent if | conditioned on Y: I(X; Z|Y) = 0.
By additivity, reversing the order and conditioning on Z gives

I(X;2)+ [(X;Y|2) = I(X;Y]|2)
— (XY, 2)
(flip the role of Y and Z) = I(X Y)+I(X:Z]Y)
(additivity) = I(X;Y)

By I(X;Y|Z) > 0, we obtain I(X;Y) > I(X; Z).
We also know that equality holds if and only if I(X;Y|Z) =0 O

What does equality mean? Since the conditional mutual information averages the mutual
information for the conditional distributions over the outcomes of Z, for any outcome for which
Z has a nonzero probability, either X determines Y or Y determines X.

Additionally, | can use the same proof here in order to make another statement.

2.2.3 Theorem. Given a Markov chain XY, Z as above, the [(X;Y|Z) < I(X;Y). In words,
the conditional mutual information is less than or equal to the mutual information.

Proof-

From the proof of the previous assertion, I(X;Z)+I(X;Y|Z) = I(X;Y)
—— —_——
>0 by the additivity

]

2.2.4 Remark. Before we had concluded that conditioning reduced entropy, so conditioning re-
duces uncertainty. But here, conditioning reduces mutual information. This can be interpreted
that the additional information about Y gained from observing Z makes X and Y appear more
independent. The above comparison is generally only true if you have a Markov chain, otherwise
it may or may not hold.

2.2.5 Remark. For example, if {X,Y, Z} are random variables that have outcomes

(0,0,0) (0,1,1)

(1,0,1) (1,1,0)
with equal probability. You can observe that if Z = 0 then we have (0,0) or (1, 1) with equal
probability. So knowing Z does not give any information about X alone. However, knowing
Z and Y determines X. On the other hand, just looking at X and Y shows that all possible

outcomes have equal probability 1/4, so they are independent, /(X;Y) = 0. We see that the
conditional mutual information is

HX5Y]2) =2 apeerony P2(OIXY]Z =)

[N

%( 1n%+11n7)
—ln2,

=

larger than 1(X;Y).



This is the end of the prelude and of the introduction of the main players related to entropy.
We are at the first few pages of Khinchin.

3 Sources and Coding

3.1 Asymptotic Equipartitioning

We start with the simplest type of source, a very trivial Markov chain. It spits something out and
immediately forgets what it produced. What information theory does is relates how sequences
behave in an asymptotic way in terms of entropy, in terms of something that only looks at the
individual distruibution.

3.1.1 Definition. A discrete memoryless source (DMS) is a stochastic process { X }32, consisting
of independently and identically distributed (i.i.d) random variables with an at most countable
alphabet A.

3.1.2 Theorem. Wimpy Asymptotic Equipartitioning Property (not in the book)
Given a DMS (discrete memoryless source) {x;}52,, then

1 n >OO . Y
——InPx, x,..x,(X1,Xo, ..., X,) —— H(Xy) in probability
n

3.1.3 Remark. This converges to the entropy of any one of those copies. What it really says
is that if we look at this probability, it decays exponentially, and the rate of exponential decay
is H(X1). So with probability one in the limit the asymptotic rate is within ¢ of the number
H(Xy). The rate of decay is fixed. The asymptotic rate of decay is as close to H(X;) as we
want.

Proof. We note —InPx, (X;) are independent and identically distributed. So by the Weak Law
of Large Numbers, by making n sufficiently large, we can make them as close as | want to their
expected value.

1 < n—o0
IED(]E > Py (X;) - E[InPx, (X1)]| <e) 21
, ————
J=1 since they are all i.i.d we can take

X1 and this is now —H(X7)
]

This is an overwhelming theme in information theory, we split between things that happen
with overwhelming probability and ignore the remaining outcomes (outside of of an € range of
the decay rate H(X). So this motivates another definition.

3.1.4 Definition. We call a sequence {z1, xs,...,2,} (note these are lower case x's) weakly e-
typical, if it is exactly in this range of probabilities \% InPx, x,...x, (21,22, dots, x,)+H(X;)| <
e and we combine all such z in the set A”

This is where we get to the real statement on asymptotic equipartitioning.



3.1.5 Theorem. Shannon-McMillan-Breiman Theorem Let ¢ > 0, for a DMS {X;}52, with
Ex, [InP(X;)?)] < oo. Consider { A"}, then the following holds

1. P((Xy, X, ..., X,) ¢ A?) < eV sufficiently largen

2.

A" > (1 — €)e"HXD=9Y sufficiently large n
—~~

size of A7

|A"] < (1 — )" DTy e N

3. Ifz € A", then for sufficiently large n, e "(HXV+) < P(X, ... X,) < e H(X1)=0)

So the importance for coding, when you send data with a cell phone you give yourself some
slack probability of encountering an atypical sequence. Accordingly for typical sequences, you
ennumerate the sequences. You can say something about the size of these typical messages and
can now send a compressed message. The only quantity that becomes relevant is the entropy.
On the whole what you are talking about is squences, long sequences with a little bit of slack.
So you can make a statement about the whole coding scheme based on the entropy.

Proof. By Chebyshev, for n > % with 0 = E,[(InP,,)? — H(z1)?]
we have P((Xy,...,X,) ¢ A?))
=P(| — LInP(Xy,...,X,) — H(X))| > €) < 25 <

Using the above, for n > Z—;

2

o
1 — € S ]- - _3 S Z ]P)xl,zg,...,acn (I)
e TEAD

< 3 =9

TEAD

By exponentiating

from the defintion of the typical set, the sum is summed over a constant so
= AL > (1— )X
€
size of A7

This holds for all sufficiently large n For all n € N,

1> Prpgy () > Y e 0T

TEAD TEAD

SO
— |A?|efn(H(X1)+e)

The next part is just by the defintion of the set A”, Inequalitites for probabiliity of any x €
Alfollows from the defintion of A” O

The main point of this enumeration business is this bound in the size of the set. We have
control over the size of A, then each element has the same probability, and we only have to deal
with the uniform distribution.

In the near future, we will discuss typical sequences and the consequences of asymptotic
equipartitioning for coding.



3.2 Block Codes for Discrete Memory Sources

3.2.6 Definition. An (n,m) block code is a set C of size n together with a map ¢ : A — C
As a consequence of the Shannon-McMillan-Breiman Theorem we have the following

3.2.7 Theorem. Block Coding Theorem Let {X;}32, be a DMS with (marginal since all copies
of one r.v.) entropy H(X,) and € > 0 then there is 0 < § < € and a sequence of codes
{(Cn, #n)}52, with block sizes {m,22,}, |Cp| = mysuch that £ Inm,, < H(z)+§ and there exist

maps {Y}2 |} where ¢ : C,, — A" such that for all sufficiently large n, the failure probability of
deCOding is bounded by P<wn o (bn(Xl, XQ, X37 e ;Xn)) 7é (Xh XQ, X37 R ,Xn)) <€

The ¢, is for encoding, the 1, for decoding. The standard assumption is that the € is the
tolerance for errors. Th bound on the size of C, tells you how long the blocks (for any given
code alphabet) are going to be. If the source has low entropy, then we can compress, meaning
achieve small block sizes. However, this theorem does not tell you how to do it, it gives you a
performance bound.



