Information Theory with Applications, Math6397 Lecture Notes from October 2, 2014

taken by Nathaniel Hammen

Last Time:

- Huffman's Code, also for k-ary trees
- Discrete Memoryless channels
- Channel coding with fixed length transition codes
- Jointly typical sequences

3 Coding for discrete channels (continued)

3.1 The discrete memoryless channel (continued)

3.1.9 Theorem. Given a discrete memoryless source $\{X_j\}_{j=1}^{\infty}$ and a discrete memoryless channel $\gamma: \mathbb{A} \times \Omega \to \mathbb{B}$, denoting $Y_j = \gamma(X_j)$ for all $j \in \mathbb{N}$, then if $\ln(\mathbb{P}_{X_1}(X_1))$, $\ln(\mathbb{P}_{Y_1}(Y_1))$ and $\ln(\mathbb{P}_{X_1,Y_1}(X_1,Y_1))$ are integrable, we have

$$-\frac{1}{n}\ln(\mathbb{P}_{X_1,\dots,X_n}(X_1,\dots,X_n)) \to H(X_1)$$
$$-\frac{1}{n}\ln(\mathbb{P}_{Y_1,\dots,Y_n}(Y_1,\dots,Y_n)) \to H(Y_1)$$

and

$$-\frac{1}{n}\ln(\mathbb{P}_{X_1,\dots,X_n,Y_1,\dots,Y_n}(X_1,\dots,X_n,Y_1,\dots,Y_n)) \to H(X_1,Y_1)$$

Proof. By independence,

$$\ln(\mathbb{P}_{X_1,\dots,X_n}(X_1,\dots,X_n)) = \ln\left(\prod_{j=1}^n \mathbb{P}_{X_j}(X_j)\right) = \sum_{j=1}^n \ln\left(\mathbb{P}_{X_j}(X_j)\right)$$

$$\ln(\mathbb{P}_{Y_1,\dots,Y_n}(Y_1,\dots,Y_n)) = \ln\left(\prod_{j=1}^n \mathbb{P}_{Y_j}(Y_j)\right) = \sum_{j=1}^n \ln\left(\mathbb{P}_{Y_j}(Y_j)\right)$$

$$\ln(\mathbb{P}_{X_1,\dots,X_n,Y_1,\dots,Y_n}(X_1,\dots,X_n,Y_1,\dots,Y_n)) = \ln\left(\prod_{j=1}^n \mathbb{P}_{X_j,Y_j}(X_j,Y_j)\right)$$
$$= \sum_{j=1}^n \ln\left(\mathbb{P}_{X_j,Y_j}(X_j,Y_j)\right)$$

We then get convergence by the strong law of large numbers:

$$-\frac{1}{n}\sum_{j=1}^{n}\ln\left(\mathbb{P}_{X_{j}}(X_{j})\right) \to -\mathbb{E}\left[\ln\left(\mathbb{P}_{X_{1}}(X_{1})\right)\right] = H(X_{1})$$

$$-\frac{1}{n}\sum_{j=1}^{n}\ln\left(\mathbb{P}_{Y_{j}}(Y_{j})\right) \to -\mathbb{E}\left[\ln\left(\mathbb{P}_{Y_{1}}(Y_{1})\right)\right] = H(Y_{1})$$

$$-\frac{1}{n}\sum_{j=1}^{n}\ln\left(\mathbb{P}_{X_{j},Y_{j}}(X_{j},Y_{j})\right) \to -\mathbb{E}\left[\ln\left(\mathbb{P}_{X_{1},Y_{1}}(X_{1},Y_{1})\right)\right] = H(X_{1},Y_{1})$$

Since the strong implies the weak law of large numbers, we have an immediate consequence for the probability of F^n_δ .

3.1.10 Corollary. Let $\epsilon > 0$. By choosing n sufficiently large, we can achieve $\mathbb{P}(F_{\delta}^n) > 1 - \epsilon$

3.1.11 Theorem (Shannon-McMillan for channels). Given a discrete memoryless source $\{X_j\}_{j=1}^{\infty}$, and a discrete memoryless channel $\gamma: \mathbb{A} \times \Omega \to \mathbb{B}$, $\ln(\mathbb{P}_{X_1}(X_1))$, $\ln(\mathbb{P}_{Y_1}(Y_1))$ and $\ln(\mathbb{P}_{X_1,Y_1}(X_1,Y_1))$ integrable, and $\delta > 0$, then for all sufficiently large n, F_{δ}^n satisfies

1.
$$\mathbb{P}_{X_1,...,X_n,Y_1,...,Y_n}((F_{\delta}^n)^c) < \delta$$

2.
$$(1-\delta)exp(n(H(X,Y)-\delta)) < |F_{\delta}^n|$$

3.
$$|F_{\delta}^n| < exp(n(H(X,Y) + \delta))$$

4. If
$$(x_1,\ldots,x_n,y_1,\ldots,y_n)\in F^n_\delta$$
, then

$$exp(-n(H(X,Y)+\delta)) < \mathbb{P}(x_1,\ldots,x_n,y_1,\ldots,y_n) < exp(-n(H(X,Y)-\delta))$$

Proof. 1. By the preceding corollary.

2. To prove the second assertion, use the above to get

$$1 - \delta < \mathbb{P}_{X_1, \dots, X_n, Y_1, \dots, Y_n}(F_{\delta}^n) = \sum_{(x_1, \dots, x_n, y_1, \dots, y_n) \in F_{\delta}^n} \mathbb{P}_{X_1, \dots, X_n, Y_1, \dots, Y_n}(x_1, \dots, x_n, y_1, \dots, y_n)$$

By the definition of a jointly typical sequence, if $(x_1,\ldots,x_n,y_1,\ldots,y_n)\in F^n_\delta$, then

$$-\frac{1}{n}\mathbb{P}_{X_1,\dots,X_n,Y_1,\dots,Y_n}(x_1,\dots,x_n,y_1,\dots,y_n) > H(X_1,Y_1) - \delta$$

so, by exponentiating,

$$1 - \delta < \sum_{(x_1, \dots, x_n, y_1, \dots, y_n) \in F_{\delta}^n} \mathbb{P}_{X_1, \dots, X_n, Y_1, \dots, Y_n} (x_1, \dots, x_n, y_1, \dots, y_n)$$

$$< \sum_{(x_1, \dots, x_n, y_1, \dots, y_n) \in F_{\delta}^n} e^{-n(H(X_1, Y_1) - \delta)}$$

$$= |F_{\delta}^n| e^{-n(H(X_1, Y_1) - \delta)}$$

and hence $(1 - \delta)exp(n(H(X, Y) - \delta)) < |F_{\delta}^n|$.

3. By the definition of a jointly typical sequence, if $(x_1,\ldots,x_n,y_1,\ldots,y_n)\in F^n_\delta$, then

$$-\frac{1}{n}\mathbb{P}_{X_1,\dots,X_n,Y_1,\dots,Y_n}(x_1,\dots,x_n,y_1,\dots,y_n) < H(X_1,Y_1) + \delta$$

so, by exponentiating,

$$1 \ge \sum_{(x_1, \dots, x_n, y_1, \dots, y_n) \in F_{\delta}^n} \mathbb{P}_{X_1, \dots, X_n, Y_1, \dots, Y_n}(x_1, \dots, x_n, y_1, \dots, y_n)$$

$$> \sum_{(x_1, \dots, x_n, y_1, \dots, y_n) \in F_{\delta}^n} e^{-n(H(X_1, Y_1) + \delta)}$$

$$= |F_{\delta}^n| e^{-n(H(X_1, Y_1) + \delta)}$$

and thus $|F_{\delta}^n| < exp(n(H(X,Y) + \delta)).$

- 4. The last assertion follows directly from the definition of a jointly typical sequence, and was used in proving both parts of the second assertion.
- 3.1.12 Question. What is the transmission rate of a channel?
- **3.1.13 Definition** (capacity). Given a discrete memoryless channel γ with transition probabilities $\{\mathbb{W}(\bullet|a)\}_{a\in\mathbb{A}}$, then we define the capacity of γ to be $C=\max_{\mathbb{P}_X}I(X;Y)$ where $Y=\gamma(X)$.
- **3.1.14 Theorem** (Channel coding). Consider a discrete memoryless channel $\gamma: \mathbb{A} \times \Omega \to \mathbb{B}$, and $C = \max_{\mathbb{P}_X} I(X;Y)$ with $Y = \gamma(X)$. Let $\epsilon > 0$, $4\epsilon > \tau > 0$. Then there is a sequence of (n,m_n) fixed-length transmission codes $(\mathcal{C}_n,\phi_n,\psi_n)$ such that for sufficiently large n, $\frac{1}{n} \ln m_n > C \tau$ and the averaged error probability $P_e(\psi_n \circ \gamma \circ \phi_n \neq id) < \epsilon$.

Proof. For this proof, we will abbreviate (X_1,\ldots,X_n) as $X^{\otimes n}$, (Y_1,\ldots,Y_n) as $Y^{\otimes n}$, and $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ as $(X,Y)^{\otimes n}$. By choosing N_0 appropriately, we have $\{m_n\}$ integers with $C-\tau<\frac{1}{n}\ln m_n\leq C-\frac{\tau}{2}$. Let $\delta=\frac{\tau}{8}$. Choose \mathbb{P}_X which achieves the capacity, let \mathbb{Q}_Y be the corresponding output distribution, i.e. $\mathbb{Q}_Y(b)=\sum_{a\in\mathbb{A}}\mathbb{P}_X(a)\mathbb{W}(b|a)$. We demonstrate the existence of a code sequence in 3 steps.

Step 1: Select m_n input sequences $\{c_j\}_{j=1}^{m_n}$ of length n from $\mathbb A$ randomly, according to $\mathbb P_{X^{\otimes n}}$. Note that duplicates are possible. Identify $\mathcal C_n=\{1,2,\dots,m_n\}$ with codes sequences $\phi_n(j)=c_j$ and choose

$$\psi_n(y) = \left\{ \begin{array}{ll} j & \text{if } \phi(j) = c_j, (c_j, y) \in F_\delta^n, \text{ and } \not \exists (c', y) \in F_\delta^n \text{ with } c' \neq c_j \\ \text{arbitrary} & \text{otherwise} \end{array} \right.$$

Step 2: We estimate the averaged error probability for the randomly generated code. Let $\Lambda(c_m)$ be the probability of having a decoding error given fixed input sequence c_m . The error could come from $(c_m, y) \notin F^n_\delta$ (not being typical) or from multiple source symbols mapped to y within F^n_δ . We have

$$\Lambda(c_m) \le \sum_{\substack{y \in \mathbb{B}^n \\ (c_m, y) \notin F_\delta^n}} \mathbb{W}(y|c_m) + \sum_{m' \ne m} \sum_{\substack{y \in \mathbb{B}^n \\ (c_{m'}, y) \in F_\delta^n}} \mathbb{W}(y|c_m)$$

with the notation $y=(y_1,\ldots,y_n)$ with $\mathbb{W}(y|c_m)=\prod_{k=1}^n\mathbb{W}(y_k|(c_m)_k)$.

If we average with respect to the choice of codewords, governed by $\mathbb{P}_{X^{\otimes n}}$, then we obtain the expected error probability.

$$\mathbb{E}_{X^{\otimes n}}[\Lambda(c_m)] = \sum_{a \in \mathbb{A}^n} \mathbb{P}_{X^{\otimes n}}(a)\Lambda(a)$$

$$\leq \sum_{a \in \mathbb{A}^n} \left(\sum_{\substack{y \in \mathbb{B}^n \\ (a,y) \notin F_{\delta}^n}} \mathbb{P}_{X^{\otimes n}}(a)\mathbb{W}(y|a) + \sum_{m' \neq m} \sum_{\substack{y \in \mathbb{B}^n \\ (c_{m'},y) \in F_{\delta}^n}} \mathbb{P}_{X^{\otimes n}}(a)\mathbb{W}(y|a) \right)$$

$$= \mathbb{P}_{(X,Y)^{\otimes n}}((F_{\delta}^n)^c) + \sum_{a \in \mathbb{A}^n} \sum_{m' \neq m} \sum_{\substack{y \in \mathbb{B}^n \\ (c_{m'},y) \in F_{\delta}^n}} \mathbb{P}_{X^{\otimes n},Y^{\otimes n}}(a,y)$$

$$= \mathbb{P}_{(X,Y)^{\otimes n}}((F_{\delta}^n)^c) + \sum_{m' \neq m} \sum_{\substack{y \in \mathbb{B}^n \\ (c_{m'},y) \in F_{\delta}^n}} \mathbb{P}_{Y^{\otimes n}}(y)$$

To be continued...