Information Theory with Applications, Math6397
Lecture Notes from November 04, 2014

taken by Ilknur Telkes

Last Time

e Shannon-McMillan for continuous sources

e Relative entropy and mutual information for continuous sources
e Lossy compression for continuous sources

e Gaussian channel as worst case

5.6.24 Definition. A continuous memoryless channel (CMC) is a random map 7 : R x Q@ — R
which is characterized by its transition kernel EW(-|z), < g i.e. a family of probability densities
on R for each x € R.

Standard strategy of a communication system:
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Important points about the system:

e \We are interested in the size of alphabet for the input signal X to X.

e At preprocessing step, sequence is important.

e S is the average power constraint.

e Usual capacity defined as max. mutual info. business includes codewords to be transmitted.
We recall the definition of capacity for 7,

c(S) = PI%?Q}];SI(X; Y)

with Y = ~v(X)



5.6.25 Remark. By definition, C'(S) is increasing using convexity argument. Similar as before it
can be shown to be strictly increase.

5.6.26 Theorem. For any ¢ € (0,1), there is 7, 0 < T < 2¢ and a code sequence { ¢, } of
sizes |6,| = m,, such for all sufficiently large n,
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Proof. If C(S) = 0, choose m,,=1, so P.=0. So, assume C(S) > 0

Step-1: Choose 0 < 7 < min{2¢,C(S)}. Pick £ > 0, £ < S such that
2(C(S)- C(S-¢)) < 7 (This exits because C is strictly increasing). Thus,

20(5 =€) + 5 > 20(8)

0(5—5)—%>O(5)—r>0

Pick m,, for sufficiently large n such that
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Let 0 = Z and IP, the measure for the continuous source that achieves C(S—¢), i.e. E[X?] < S—¢
and I(X;Y) =C(S —¢).

CS—e) -~ %lnmn S C(S) — 7

Step-2: Randomly draw m,, codewords according to P¥". By the strong law of large num-
bers, a sequence of chosen codewords satisfies
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If any ¢ € %, violates %E};l c? < S then replace ¢ by 0. Next, define the encoding map
on : {1,2,....k} — E,. When receiving a sequence y, let the decoder ¥,, be given by

v, () {k:, (¢n(k),y) € Fi*and there is no otherk'with(¢, (k'),y) € F}'
n\Y) =
1, else

where



Fp = {(x,y) €R" x R":

1
‘EP(X,Y)@’“(I',Z/) + h(X1, Y1)| <6,
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|pr®n($) + h(X1)| < 5,
1

[ pyen(y) + h(V)| < 3}

Step-3: Let A be the error probabilities for k-th transmitted codeword. Define,

n 1 -
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Then as before, averaging w.r.t. choice of k-th codeword,

-1 k/;ék. n J{yeR":(ck’ y)€E S

Holder ineq.

B[R] < Pxon(G) + Plyyer(F)°)
+ (mn — 1) exp(—n(h(X) = 8)) exp(~n(h(Y) = 8)) exp(—n(h(X,Y) +))
Pxon(G) + Py ((F')7) + exp(—nd),

similar as in the case of channel coding proof.
By choosing n sufficiently large, we can bound the error probability smaller than,

E[Pe]§6+5+5:35:3§<3§<5

Since the expected value for P, is smaller than ¢, there is at least one choice for %,, which has

P. < ¢ as. (w.r.t. channel)
[

5.6.27 Example. Capacity for additive white Gaussian noise (AWGN), let { X;}52, be the channel
input, then the memoryless additive channel produces outputs
Y; = X; + N; with{Xj, N;} independent and{N;}32, i.i.d.

We call a memoryless additive channel and AWGN channel if N; is normal (Gaussian).

5.6.28 Theorem. Given an AWGN channel with mean-zero noise {N;}5°, with variance o* =

E[N?] > 0, subject to the average power and E[X?| < S, then

C(S) = gn(1+ )



Proof. We compute

0(5) =, max I(X;Y)
= max(h(Y) — h(Y]X))
= max(h(Y) — h(X + N|X))
= max(h(Y) — h(N|X))
= max(h(Y') — h(N)) (coming from indep.)
- pmfﬁfz)fgsh(y) — h(N) (Here, we are adding extra noise with %)

So,

c(s) = %m (2me(S + 02)) — %m (2meo?) %m (1+ %)

]

We note that the essential quantity is simply the ratio of the signal power to that of the noise.



