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Last Time

Gaussian Channels as the“worst” additive noise.

Partially noisy channels

Capacity for parallel AWGN channel, water filling principle

Capacity for parallel AWGN channe (continued)

Last time we saw
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Recall that given k channels, additive Gaussian white noise of variances σ2
1, σ

2
2, . . . , σ

2
k, the

power constraint S given by S =
�k

j=1 sj is fixed.

We wish to maximize the RHS of (1) subject to the power constraint S as above. To

accomplish this we use Lagrange Multipliers. Specifically, we wish to find
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Whenever sj > 0 we may take derivatives:
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So if
1

2σ2
i

�
1

1+
si
σ2
i

�
+ λ = 0 then

1
2 = −λ(σ2

i + si). Since σ2
i + si > 0 for each i it follows that

λ < 0. Moreover, since σ2
i +si is constant, denote it θ so that si = θ−σ2

i whenever si > 0. Then
choose θ such that S =

�k
j=1 sj. To accommodate all indices let sj = maxj=1,...,k{θ − σ2

j , 0}.
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Alternatively, Since
�

(1/2) ln(1 + (sj/σ2
j )) is concave the sum is maximized when sj + σ2

j

has a constant value for all j for which sj > 0. This is precisely the construction of θ as above.

To conclude the argument, observe the maximum can be achieved for I(X;Y ) in general by

choosing X to have N(µ, σ2) distribution. Thus the capacity becomes

C(S) =
k�

j=1
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�
.

5.7 Matrix Theory and Linear Algebra Review

We wish to answer the question “What happens when noise is correlated?”. To do so, we

need some results from matrix theory and linear algebra. Specifically, we will extend notions of

convexity to operators.

5.7.27 Theorem. Let H be a Hilbert Space. Suppose x ∈ H with �x� = 1. Let f be convex

functions and suppose that A is a bounded Hermitian operator. Then

f(�Ax, x�) ≤ �f(A)x, x� .

Proof. Consider the spectral family {Fλ}λ∈R where each Fλ is strongly right-continuous and

Fλ → I as λ → ∞ so that

A =

�

R
λ dFλ.

Then by continuity of f ,

f(A) =

�

R
f(λ) dFλ

and

�Ax, x� =
�

R
λ d �Fλx, x� .

Let �Fλx, x� = µx(λ). Then

�(f(A)x), x� =
�

R
f(λ) dµx(λ).

with spectral probability measure µx. So by Jensen’s Inequality

�Ax, x� =
�

λ dµx(λ) ≤
�

f(λ) dµx(λ) = �f(A)x, x� ,

as desired.

5.7.28 Example. If A is Hermitian and compact then A =
�∞

n=1 λnPn where each Pn is a

projection and
�∞

n=1 Pn = I. (This follows from the spectral theorem for compact operators.)

For convex f and x satisfying �x� = 1 we have

f (�Ax, x�) = f

� ∞�

n=1

λn �Pnx, x�
�
.
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Yet, �Pn(x), x� = �Pn(x)�2 = Pn, all Pn ≥ 0, and
�

Pn = 1 so Pn’s are all probabilities.

By Jensen’s Inequality,

f (�Ax, x�) = f

� ∞�

j=1

λn �Pnx, x�
�

J
≤

∞�

n=1

f(λn)Pn =
��

f(λn)Pnx, x
�
.

5.7.29 Corollary. Given a compact operator A with strictly positive eigenvalues and an orthonor-

mal basis {ej}nj=1 such that {�Aen, en�} is log summable, we have

Tr [lnA] ≤
∞�

j=1

ln �Aej, ej� < ∞.

5.7.30 Corollary (Hadamard’s Inequality). If H is d-dimensional then for any positive definite

operator A we have detA ≤
�d

j=1 Ajj.

Proof. If A is singular, then the inequality is trivial, because the diagonal values Ai,i ≥ 0, are by
Ai,i = �Aei, ei� =

�d
j=1 λj�Pjei�2 convex combinations of all (non-negative) eigenvalues, thus

the right-hand side is non-negative and the left hand side is zero. Thus, we can assume A is

non-singular. Denote the eigenvalues of A by λ1, λ2, . . . , λd. Then

ln(detA) =
d�

j=1

ln(λj + �) = Tr (lnA) ≤
d�

j=1

lnAjj = ln
d�

j=1

Ajj.

Hence detA ≤
�d

j=1 Ajj.

Correlated Noise

Suppose noise variable {N1, N2, . . . , Nk} have µ = 0 for all Ni and covariance matrix CN given

by (CN)ij = E[NiNj]. Since CN is a real valued and symmetric matrix it is Hermitian. The

input variables {X1, . . . , Xk} have µ = 0 and covariance CX . The eigenvalues are variance in

the direction of the associated eigenbasis vector. This motivates the power constraint in the

following theorem.

5.7.31 Theorem. Given k parallel channels with noise {N1, N2, . . . , Nk} as described above and

power constraint Tr [CX ] = S, then the capacity is given by

C(S) =
k�

j=1

1

2
ln

�
1 +

si
σ2
i

�

where σ2
i are the eigenvalues of CN and si is as before: si = max{θ − σ2

i , 0} with θ = si + σ2
i

such that
�k

j=1 sj = S.

Proof. We wish to maximize I(X;Y ). Since I(X;Y ) = h(Y )− h(Y |X) where Y = N +X we

have I(X;Y ) = h(Y )− h(N) for fixed N . Then the problem reduces to maximizing Y .

The covariance matrix of YY = X +N is, by independence, CY = CX + CN because

E[(Xi +Ni)(Xj +Nj)] = E[XiXj] + E[NiNj].
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Then differential entropy is bounded by the Gaussian:

h(Y ) ≤ 1

2
ln
�
(2πe)k|CX + CN |

�

with equality when Y is Gaussian.

Since CN is Hermitian, there exists an orthonormal basis for which CN is diagonal. Let O be an

orthonormal basis such that D = diag (σ2
1, . . . , σ

2
k) and CN = OtDO. Then

det(CX + CN) = det(CX +OtDO) = det(CX +OtDO) det(OtO)

= det((CX +OtDO)(OtO)) = det(O(CX +OtDO)Ot)

= det(OCXOt +D).

Note that Tr [OCXOt] = Tr [CX ]. Let OCXOt = A. We wish to maximize det[A +D] subject
to the constraint Tr [A] ≤ S. Hadamard’s inequality gives

det[A+D] ≤ πk
j=1(Ai,i + σ2

i ).

To achieve equality let Ai,i = max{θ−σ2
i , 0} with

�
Aii = S. The upper bound is achieved when

A is diagonal with entries Aii so CX and CN are simultaneously diagonalizable and eigenvalues

si, σ2
i satisfy the relationship as in the case of independent noise components.
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