Functional Analysis, Math 7320 Lecture Notes from August 22, 2016

taken by Bernhard Bodmann

0 Course Information

Text: W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991 (or later).

Office: PGH 604, 713-743-3851, Mo 1-2pm, We 10:30-11:30am

Email: bgb@math.uh.edu

Grade: Based on preparation of class notes in LaTeX, rotating note-takers

Background knowledge: Linear algebra, Real analysis, Lebesgue integration

1 Essentials of Topology

1.1 From semimetric to normed spaces, with examples

1.1.1 Definition. Let $\mathcal X$ be a set. A map $d:\mathcal X\times\mathcal X\to\mathbb R^+\equiv [0,\infty[$ is called a *semimetric* on $\mathcal X$ if

- (1) d(x,x) = 0 for all $x \in \mathcal{X}$,
- (2) d(x,y) = d(y,x) for all $x,y \in \mathcal{X}$ (symmetry), and
- (3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in \mathcal{X}$ (triangle inequality).

If instead of (1), we have that d(x,y)=0 if and only if x=y, then d is called a *metric*.

1.1.2 Example. On \mathbb{R} , we define a metric by

$$d(x,y) := \frac{|x-y|}{1+|x-y|}, \quad x,y \in \mathbb{R}.$$

The first two properties follow directly from the definition. To prove the triangle inequality, first show that the function $f:t\mapsto \frac{t}{1+t}$ is subadditive on \mathbb{R}^+ , so $f(s+t)\leq f(s)+f(t)$ for all $s,t\geq 0$.

Henceforth, we write \mathbb{K} for the field of the real or the complex numbers, \mathbb{R} or \mathbb{C} , when either choice is admissible.

1.1.3 Example. On $\mathbb{K}^{\mathbb{N}}$, the space of real or complex sequences, we define a metric by

$$d(x,y) := \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|x_j - y_j|}{1 + |x_j - y_j|},$$

where $x = (x_j)_{j \in \mathbb{N}}$ and $y = (y_j)_{j \in \mathbb{N}}$.

This metric will appear again when we discuss product topologies.

This last example has the natural structure of a vector space. Semimetrics or metrics can arise as a consequence of higher-level structural elements, seminorms or norms.

1.1.4 Definition. Let $\mathcal V$ be a vector space over $\mathbb K$. A function $p:\mathcal V\to\mathbb R^+$ is called a *seminorm* if it satisfies

- (1) $p(\lambda x) = |\lambda| p(x)$ (homogeneity) for all $\lambda \in \mathbb{K}$, $x \in \mathcal{V}$,
- (2) $p(x+y) \le p(x) + p(y)$ (triangle inequality) for all $x, y \in \mathcal{V}$

If, in addition, p(x) > 0 for all $x \in \mathcal{V} \setminus \{0\}$, then p is called a *norm* on \mathcal{V} and (\mathcal{V}, p) a *normed* (vector) space. We often use the notation $||x|| \equiv p(x)$.

- 1.1.5 Remark. If p is a seminorm on \mathcal{V} , then d(x,y) := p(x-y) defines a semimetric. If p is a norm, then d is a metric.
- 1.1.6 Example. On $\mathcal{V} = \mathbb{K}^n$, with $n \in \mathbb{N}$, and $p \geq 1$,

$$||x||_p := \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}, \quad x \in \mathcal{V}$$

defines a norm, and so does

$$||x||_{\infty} := \max\{|x_j|\}_{j=1}^n, \quad x \in \mathcal{V}.$$

To prove this, we use Minkowski's inequality

$$||x + y||_p \le ||x||_p + ||y||_p, \quad x, y \in \mathcal{V}$$

which, in turn, can be shown (exercise) by Hölder's inequality

$$|\sum_{j=1}^{n} x_j y_j| \le ||x||_p ||y||_q$$

$$\text{ for } 1 \leq p < \infty \text{, with } q = \begin{cases} \frac{p}{p-1}, & p > 1 \\ \infty, & p = 1 \end{cases}.$$

Interpreting $x \in \mathbb{K}^n$ as a map from the index set $\{1, 2, \dots, n\}$ to \mathbb{K} points to a more general way to generate norms on \mathbb{K} -valued function spaces.

1.1.7 Example. Let \mathcal{X} be a set and $B(\mathcal{X}, \mathbb{K})$ the vector space of \mathbb{K} -valued bounded functions on \mathcal{X} , then

$$||f||_{\infty} = \sup\{|f(x)| : x \in \mathcal{X}\}, \quad f \in B(\mathcal{X}, \mathbb{K})$$

defines a norm on this space.

1.1.8 Examples. Other examples of normed spaces of \mathbb{K} -valued functions are the sequence spaces

(a)
$$\ell^p := \{(x_j)_{j \in \mathbb{N}} : \sum_{j=1}^\infty |x_j|^p < \infty \}$$
 with $\|x\|_p = (\sum_{j=1}^\infty |x_j|^p)^{1/p}$ or

(b)
$$c_0 := \{(x_i)_{i \in \mathbb{N}} : \lim_{i \to \infty} x_i = 0\}$$
 with $||x||_{\infty} = \max_{i \in \mathbb{N}} |x_i|$.

Next to the countable index set \mathbb{N} , we can also choose an uncountable one.

1.1.9 Example. Let $1 \leq p < \infty$, then the space C([a,b]) of continuous functions on [a,b] can be given a norm by

$$||f||_p := \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \quad f \in C([a,b]).$$

To show the axioms, we appeal to Minkowski's inequality for (Riemann) integrals

$$||f + g||_p \le ||f||_p + ||g||_p, \quad f, g \in C([a, b])$$

which can be derived in the same way as for the sequence spaces by Hölder's inequality

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \le \|f\|_{p} \|g\|_{q}, \quad f, g \in C([a, b])$$

with
$$q= egin{cases} \frac{p}{p-1}, & p>1 \\ \infty, & p=1 \end{cases}$$
 and $\|g\|_{\infty}=\max\{|g(x)|:x\in[a,b]\}.$

The structure of a semimetric or metric space is reflected in specific sets.

- **1.1.10 Definition.** Let (\mathcal{X}, d) be a semimetric space, then
- (a) $B_r(x) \equiv \{y \in \mathcal{X} : d(x,y) < r\}$ is called the *open ball* of rdius r > 0 centered at $x \in \mathcal{X}$ and
- (b) $U \subset \mathcal{X}$ is called *open* if for each $x \in U$, there is $\epsilon > 0$ such that $B_{\epsilon}(x) \subset U$.

The notion of open sets can be defined more abstractly without the background of (semi)metric spaces.

- **1.1.11 Definition.** Let \mathcal{X} be a set. The power set $\mathcal{P}(\mathcal{X})$ is the set of all subsets of \mathcal{X} . A subset τ of $\mathcal{P}(\mathcal{X})$ is called a *topology* on \mathcal{X} if it satisifes
- (1) $\emptyset, \mathcal{X} \in \tau$
- (2) if $U_1, U_2, \dots, U_n \in \tau$, then $\bigcap_{j=1}^n U_j \in \tau$,
- (3) if $U_j \in \tau$ for each $j \in J$, then $\bigcup_{j \in J} U_j \in \tau$.

In this case, (\mathcal{X}, τ) is called a *topological space* and sets in τ are called *open*.

1.1.12 Examples. For any set \mathcal{X} , $\tau = \{\emptyset, \mathcal{X}\}$ or $\tau = \mathcal{P}(\mathcal{X})$ defines a topology. The latter is called the *discrete topology*.

- **1.1.13 Definition.** Let (\mathcal{X}, τ) be a topological space.
- (a) Given $x \in \mathcal{X}$, then $U \subset \mathcal{X}$ is called a *neighborhood of* x if there is $U_0 \subset U$, $U_0 \in \tau$ and $x \in U_0$. We write $\mathcal{U}(x) \equiv \{U : U \text{ is neighborhood of } x\}$.
- (b) $F \subset \mathcal{X}$ is *closed* if $X \setminus F$ is open.

With the help of De Morgan's laws, we can deduce properties of closed sets from those of open ones.

- **1.1.14 Lemma.** Let (\mathcal{X}, τ) be a topological space, then
- (1) \emptyset , \mathcal{X} are closed,
- (2) if F_1, F_2, \ldots, F_n are closed, so is $\bigcup_{i=1}^n F_j$,
- (3) if F_j is closed for each $j \in J$, then so is $\cap_{j \in J} F_j$.

Given a set, we can formulate closed or open sets related to it.

- **1.1.15 Definition.** Let (\mathcal{X}, τ) be a topological space and $E \subset \mathcal{X}$, then
- (a) $\overline{E} = \bigcap \{ F \subset \mathcal{X}, E \subset F, F \text{ closed} \}$ is the *closure* of E,
- (b) $E^{\circ} = \cup \{U \subset \mathcal{X} : U \subset E, U \in \tau\}$ is the interior of E, and
- (c) $\partial E = \overline{E} \setminus E^{\circ}$ is its boundary.

In most cases, we do not study the most general type of topological spaces.

- **1.1.16 Definition.** A topological space (\mathcal{X}, τ) is called a *Hausdorff space* if for each $x, y \in \mathcal{X}$, $x \neq y$, we can find neighborhoods of them that are disjoint.
- **1.1.17 Lemma.** Let (\mathcal{X}, d) be a semimetric space.
- (1) For each r > 0, $x \in \mathcal{X}$, the set $B_r(x)$ is open,
- (2) For each $r \geq 0$, $x \in \mathcal{X}$, the set $\overline{B}_r(x) \equiv \{y \in \mathcal{X} : d(x,y) \leq r\}$ is closed. It is called the closed ball of radius r centered at x.
- (3) (X,d) is Hausdorff if and only if d is a metric.

Proof. Exercise. □

- 1.1.18 Examples. Typical cases of spaces with semimetrics are:
- (a) $\mathcal{X} = \mathbb{K}^2$, $d(x, y) = |x_1 y_1|$,
- (b) $\mathcal{X} = C([0,2]), d(f,g) = \int_0^1 |f(x) g(x)| dx.$