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1 Essentials of Topology

1.1 From semimetric to normed spaces, with examples

1.1.1 Definition. Let X be aset. Amapd: X x X - R" =[0,00[ is called a semimetric on
X if

(1) d(z,xz) =0 forall x € X,

(2) d(z,y) = d(y,z) for all x,y € X (symmetry), and

(3) d(z,z) <d(x,y) + d(y, 2) for all x,y, z € X (triangle inequality).

If instead of (1), we have that d(z,y) = 0 if and only if x = y, then d is called a metric.

1.1.2 Example. On R, we define a metric by

|z =y
dlz,y) = ————, ,y €R.

The first two properties follow directly from the definition. To prove the triangle inequality, first
show that the function f : ¢ +— i is subadditive on R™, so f(s +t) < f(s) + f(t) for all
s,t > 0.



Henceforth, we write K for the field of the real or the complex numbers, R or C, when either
choice is admissible.

1.1.3 Example. On KY, the space of real or complex sequences, we define a metric by

where x = () jen and y = (y;)jen-
This metric will appear again when we discuss product topologies.

This last example has the natural structure of a vector space. Semimetrics or metrics can
arise as a consequence of higher-level structural elements, seminorms or norms.

1.1.4 Definition. Let V be a vector space over K. A function p : V — R is called a seminorm
if it satisfies

(1) p(Ax) = |A|p(x) (homogeneity) for all A € K, z € V,
(2) p(x +y) < p(x)+ p(y) (triangle inequality) for all z,y € V

If, in addition, p(z) > 0 for all z € V' \ {0}, then p is called a norm on V and (V,p) a normed
(vector) space. We often use the notation ||z|| = p(x).

1.1.5 Remark. If p is a seminorm on V, then d(x,y) := p(z — y) defines a semimetric. If p is a
norm, then d is a metric.

1.1.6 Example. On YV = K", withn € N, and p > 1,
n 1/p
o= (o) ey
j=1
defines a norm, and so does
[#]loe := max{|z;|}j_,, ze€V.
To prove this, we use Minkowski's inequality
[z +ylly <Nzl + lyllp, zyeV

which, in turn, can be shown (exercise) by Holder’s inequality

n
3wyl < lzlliyly
j=1

L) > 1
for 1 <p < oo, withg=<¢ 7! p="
oo, p=1

Interpreting x € K™ as a map from the index set {1,2,...,n} to K points to a more general

way to generate norms on K-valued function spaces.
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1.1.7 Example. Let X be a set and B(X, K) the vector space of K-valued bounded functions on
X, then
[flloe = sup{|f(z)| -z € X}, f € B(X,K)

defines a norm on this space.

1.1.8 Examples. Other examples of normed spaces of K-valued functions are the sequence spaces
(a) 07 = {(x;)jen = D52y |ayP < oo} with [l = (3252, [alP) /P or
(b) co = {(z;)jen : lim; o x; = 0} with ||z|/s = max; ey |2,

Next to the countable index set N, we can also choose an uncountable one.

1.1.9 Example. Let 1 < p < o0, then the space C(]a, b]) of continuous functions on [a, b] can be
given a norm by

1= ( | b o) Y ectan).

To show the axioms, we appeal to Minkowski's inequality for (Riemann) integrals

Lf+glly < [1f1lp +llgllp,  fr9 € C(la, b])

which can be derived in the same way as for the sequence spaces by Holder’s inequality

I/ f(@)g(x)de] < [|fllpllglle, 159 € C(la,b])

— > 1
with ¢ = {p‘l’ b ) and ||g]|lec = max{|g(z)| : x € [a,b]}.

)

The structure of a semimetric or metric space is reflected in specific sets.
1.1.10 Definition. Let (X', d) be a semimetric space, then
(a) B.(z) ={y € X : d(z,y) < r} is called the open ball of rdius r > 0 centered at x € X and
(b) U C X is called open if for each « € U, there is € > 0 such that B.(z) C U.

The notion of open sets can be defined more abstractly without the background of (semi)metric
spaces.

1.1.11 Definition. Let X be a set. The power set P(X) is the set of all subsets of X'. A subset
T of P(X)is called a topology on X if it satisifes

(1) ,xer
(2) if Uy,Us, ..., U, €T, then n'_,U; €,
(3) if U; € 7 for each j € J, then U;c;U; € 7.

In this case, (X, 7) is called a topological space and sets in T are called open.



1.1.12 Examples. For any set X, 7 = {0, X} or 7 = P(X) defines a topology. The latter is
called the discrete topology.

1.1.13 Definition. Let (X, 7) be a topological space.

(a) Given x € X, then U C X is called a neighborhood of z if there is Uy C U, Uy € T and
x € Uy. We write U(x) = {U : U is neighborhood of x}.

(b) F' C X is closed if X \ F is open.

With the help of De Morgan's laws, we can deduce properties of closed sets from those of
open ones.

1.1.14 Lemma. Let (X, 7) be a topological space, then
(1) 0, X are closed,
(2) if Fi,F,, ..., F, are closed, so is Ui_, Fy,
(3) if F; is closed for each j € J, then so is N;c,F;.
Given a set, we can formulate closed or open sets related to it.
1.1.15 Definition. Let (X', 7) be a topological space and E C X, then
(a) E=n{F C X,E C F, F closed} is the closure of E,
(b) Ec=U{U C X :U C E,U € 7} is the interior of E, and
(c) OF = E\ E° is its boundary.
In most cases, we do not study the most general type of topological spaces.

1.1.16 Definition. A topological space (X, 7) is called a Hausdorff space if for each x,y € X,
x # 1y, we can find neighborhoods of them that are disjoint.

1.1.17 Lemma. Let (X,d) be a semimetric space.
(1) Foreachr >0, x € X, the set B,(x) is open,

(2) Foreachr >0, x € X, the set B.(x) = {y € X : d(z,y) < r} is closed. It is called the
closed ball of radius r centered at x.

(3) (X,d) is Hausdorff if and only if d is a metric.

Proof. Exercise. O
1.1.18 Examples. Typical cases of spaces with semimetrics are:

(a) X =K? d(z,y) = |21 — ul,

(b) X =C([0,2), d(f,9) = [, |f(x) - g(x)|da.



