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1.6.52 Lemma. Let (X, T) be a topological space and let Y C X.

(a) Y is quasi-compact with respect to the trace topology if and only if each open cover of Y

in X has a finite subcover.

(b1) If X is Hausdorff and Y is compact, then Y is closed.

(b2) If X is compact and Y is closed, then' Y is compact.

(c) If X is normed and Y is compact, then Y is bounded.

Proof.  (a) Proven in the previous lecture.

(b1)

We will show the complement X \ Y is open in X. To this end, let z € X \ Y. Now for
each y € Y, since X is Hausdorff, there are disjoint open sets U, and V|, containing = and
1y, respectively. We then have Y C Uer V,, and since {V,},cy is an open cover and Y is
compact, there is a finite subcover (V,),er of Y with |F| < oo and

Uwn (ﬂ Uy> =0,
yeF yeF

since every V, is disjoint from U,. But as a finite intersection of open sets, [, .Uy is

yeF Y
open and contains z. So (), .U, C X \ Y, which implies X \ Y is open in X.
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Let X be compact and let Y be closed. Then X \ Y is open in X and given an open cover
(Us)ier of Y, composed by open sets in (X, 7), we see that ({J,c; Ui) U(X \Y) is an open
cover of X. Now since X is compact, there is a finite subcover of X which also covers
Y. If X\ Y is an element of this finite subcover, then by removing it, we have found a
finite subcover of Y. We infer from this property that (Y, 7y) has the Heine-Borel/finite
subcover property as well, because every set V' C Y that is open in 7y is obtained from
V =Y NU with U open in X. Thus, after “lifting” the open cover with respect to 7y
to an open cover in X and passing to a finite subcover, intersecting the sets with Y again
gives the desired finite open subcover in (Y, 7y).

It remains to show the Hausdorff property to establish compactness. Given x,y € Y with
x # y, there are open (in X) sets V,, and V,, with x € V,, y € V,, and V, NV, = (. Thus,
V,NY and V,NY have the desired separation properties to make (Y, 1) Hausdorff. Hence
(Y, 7y) is compact.



(c) In a normed space, if (B,(0)),cy is an open cover of X, then it also covers Y. Thus there
is a finite subcover (B, (0)),.r of Y with [F'| < oo, and by choosing N = max{n € F'}

we have o
Y C Bn(0) C By(0),

which means Y is bounded.

2 Topological Vector Spaces

2.1 Fundamental properties

2.1.1 Definition. A vector space X together with a topology 7 is called a topological vector
space if

1. for every point z € X, the singleton {x} is a closed set.

2. the vector space operations
+: X xX—=>X, (r,y)—zx+y

and
S KxX =X, (Aa)— A

are continuous with respect to the product topology on X x X and K x X, respectively.
2.1.2 Theorem. Every normed space is a topological vector space.

Proof. As shown before, '+’ and '-" are continuous operations. Moreover,

N B () = {2}

neN
is closed as an intersection of closed sets. O

2.1.3 Remark. (a) For a,b € X, let V,, € U(a) and V, € U(b) be open sets. Since each
neighborhood of (a,b) € X x X contains V, x V}, continuity of '+ means that for each
U € U(a+Db), we can find V,,Vj as above with

Vit Vo={d +V:d €Vt eV} CU.

(b) Analogously, since A € K and K is equipped with the topology of open balls, for U € U (A\z),
there is an open V,, € U(x) and § > 0 such that

Bs(AM)V, ={N2' : N € Bs(\),2' e V,} C U.

Next, we explore implications of continuity for the topological structure of the space.



2.1.4 Theorem. Let X be a topological vector space, a € X and A € K with A # 0. Then both
the translation operator T, : X — X with T,x = x 4+ a and the scaling operator M, : X — X
with Myx = Ax are homeomorphisms of X onto X.

Proof. For a € X and 0 # X € K, we note that 7", o T, = id and that M,-1 o M, = id, so T,
and M, are 1 — 1. Hence, it is sufficient to show that for each a € X and 0 # X\ € K, T, and
M, are continuous. By the continuity of '+’, given z,a € X, then for U € U(z + a) there are
V, €U(a), V, € U(x) such that V, 4+ V, C U and hence a +V, C U. This means T,(V,) C U,
and so 7}, is continuous at x and since x was arbitrary, T}, is continuous.

Similarly, given U € U(Az), there is V. and § > 0 such that Bs(\)V, C U, which means
AV, C U, and thus for each A # 0, M, is continuous at x. Again, x was arbitrary and so M, is
continuous. O

According to the previous ideas, each U is open if and only if all of its translates U + a are
open. Consequently, the topology is characterized by U = U(0).

2.1.5 Definition. (a) A filterbase B C U is called a local base if each U € U contains a
B e B.

(b) A set C'is convex if for all a,b € C, we have Aa+ (1 — \)b € C for all A € [0, 1].
(c) Aset B C X is bounded if for each U € U there is s > 0 such that for all t > s, B C tU.
(d) A metric on X is called invariant if for all x,y,z € X,
d(z + z,y) = d(z,y).
2.1.6 Definition. A topological vector space is called
(a) locally convex if it has a local base of convex sets.
locally bounded if 0 has a bounded neighborhood.

locally compact if 0 has a compact neighborhood.

normable if the topology on X comes from a norm.

2.1.7 Examples. 1. Let LP(]0,1]), 0 < p < 1 be the space of measurable functions f : [0, 1] —
R such that fol |f(z)[Pdz < oo, with functions equal almost everywhere identified. The

function d(f, g) = fgl |f(z) — g(x)|Pdx is a metric on LP([0, 1]). With the inherited metric
topology, LP([0,1]), 0 < p < 1 is not a locally convex topological vector space. To see
this, we consider any open ball around 0, i.e.,

{revo: [ 1swpa < n}
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Given € > 0 and n > 1, we select n disjoint intervals in [0, 1] (not necessarily covering
0,1]), say I, ..., I,, and we set

uen

where 1 is considered to be the Lebesgue measure. Then

fr(z) = < >_pxlk(x), k=1,...,n,

1
/ fol@)Pde = e,
0

and so every fi is at distance € from 0. However, since the f;'s are supported on disjoint
intervals, their average

gul) = = 3 fule)

satisfies ) )
1 n
p - D — pl-p
/0 |gn(2)|Pdx = " kgl/o | fu(x)[Pdr = n'Pe.

Since 1 —p > 0, the distance between g,, and 0 can be made arbitrarily large with a suitable
choice of n. In fact, what this means is that the only convex open set in LP(]0, 1]) is the
whole space.

However, LP[(0,1)] is locally bounded and an F-space, since and it admits a complete
translation invariant metric with respect to which the vector space operations are continu-
ous.

2. On the other hand, the spaces L”(y) for p > 1 have their metric coming from a norm and
so they are locally convex.

We will see later that a topological vector space is normable if and only if it is locally bounded
and locally convex. Also, X is locally compact and normable if and only if dim X < oco.



