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Last time, we found that in addition to having open neighborhoods within any neighborhood,
we can find a balanced neighborhood in any neighborhood. These have the quality that they are
”closed under shrinking and rotation”, where the rotation is specifically the linear transformation
given by a complex unit scalar. This means we can restrict our attention to balanced sets (rather
than neighborhoods), which behave more like the balls in metric spaces that we are accustomed
to.

In the context of this development, we take a moment to revisit the concept of boundedness
in the TVS setting. Recall that a set B is bounded if for each V ∈ U there exists a positive
number s such that t ∈ (s,∞) implies B ⊂ tV .

11.5.1 Question. If a set B has the property that for each V ∈ U there is a positive number t
such that B ⊂ tV , must B be bounded? In other words, does the definition of boundedness
have an equivalent formulation in “A set B is bounded if for each V ∈ U there exists a positive
number t such that B ⊂ tV ”?

11.5.2 Answer. Clearly, if a set is bounded, then there is at least one positive number t as in the
posited definition.

Now, suppose B is a set such that every neighborhood V ∈ U has a number tV associated with
it such that B ⊂ tV . We have shown that each V ⊂ U contains a balanced set UV containing
zero; since any such UV is itself a neighborhood, it admits a tU > 0 such that B ⊂ tUU ⊂ tUV .
Let s > t, and set α := t

s
< 1. Then, noting that U balanced implies αU ⊂ U ,

B ⊂ tUU = (sα)U = s(αU) ⊂ sV.

Hence, we may reasonably have adopted a shorter definition. As it will turn out, we will find
Rudin’s formulation prescient rather than overburdened as it reduces our effort in proving a
number of theorems in the future.

As is often the case in mathematics, having found a ”nice” object1 that can act in the place
of ”fundamental” or ”axiomatic” object, we turn our attention to reinterpreting some of our
previous results within this new context. In particular, we can apply the argument of reducing to
balanced (and convex balanced) neighborhoods to what we know about local bases.

11.5.3 Corollary (to the final theorem given in previous notes, or, equivalently, Theorem 1.14
the Second Edition of Rudin’s text). Let X be a topological vector space. Then

1(whether simpler in some sense, easier to use, easier to find, having certain desirable qualities...)
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(a) X has a balanced local base, and

(b) if X is locally convex, it has a balanced convex local base.

Of course, our closing corollary on September 22 applies here as well; that is, if B ⊂ U is a
balanced local base, then every member of B contains a the closure of an element in B.

With such lovely structure in place, it is only natural to ask

11.5.4 Question. Is there an easy way to construct such ”nice” local bases?

11.5.5 Answer. The following theorem will demonstrate that it is enough to have one ”nice” set
V having desired qualities, in which case a local base can be constructed out of scaled (and
translated) copies of V .

11.5.6 Theorem. Let V be an open neighborhood of 0 in topological vector space X.

(a) If (rn)n∈N ⊂ R is strictly increasing and rn →∞, then X = ∪
n∈N

(rnV ).

(b) Each compact subset K ⊂ X is bounded.

(c) Given bounded set V ⊂ X and (δn)n∈N strictly decreasing with δn → 0, then (δnV )n∈N is a
local base of X.

Proof. (a) Let (rn)n∈N be a strictly increasing number sequence with no upper bound, and fix
x ∈ X. It is sufficient to show that x ∈ rnV for some n ∈ N.

By continuity of the map (α, x) 7→ αx, we have that the set S := {α ∈ K : αx ∈ V } is
open in K (as the preimage of open set V ) and contains 0. Since 0 is in the interior of S
and 1

rn
→ 0, it follows that for some nx ∈ N, all integers n ≥ nx satisfy 1

rn
∈ S. Thus,

1
rnx
x ∈ V , or, equivalently, x ∈ rnxV .

(b) Let K ⊂ X be compact, and take W ⊂ V to be a balanced open neighborhood of 0. Then
from (a), we have K ⊂ ∪

n∈N
(nW ) = X, and note that nW is balanced for all n ∈ N. Since

K is compact, the open cover {nW}n∈N admits an finite open subcover W with elements
{nW}n∈F (for some finite F ⊂ N); set N := max{n ∈ F}. Then for k ∈ F , k

N
≤ 1 and

kW = k
N

(NW ) ⊂ NW . It follows that K ⊂ NW ⊂ tNW for all t > N (this last part
by the fact that NW is balanced). Assuming X is locally bounded2, we can take W to be
bounded, and thus K is bounded.

(c) Assume V ⊂ X is bounded and (δn)n∈N is strictly decreasing to 0, and let U ∈ U . V
bounded yields an s > 0 such that V ⊂ tU for all t > s; thus, for any n ∈ N such that
sδn < 1, we have that V ⊂ 1

δn
U , or, equivalently, δnV ⊂ U . The existence of such an n is

given by the fact δn → 0 implies there is a number ns such that n ≥ ns means δn <
1
s
.

2I can find no reference nor make no connection which ensures X is locally bounded.
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11.6 Linear Maps

11.6.7 Definition. Let X be a topological vector space.

(a) a linear map f : X → K is called a linear functional3. We write X∗ for the set of all linear
functionals on X and X ′ for the set of all bounded linear functionals.

(b) Given a linear map A : X → Y between K-vector spaces, the set N (A) ≡ ker(A) ≡
A−1({0}) is called the kernel or null space of A, and R(A) := A(X) is the range of A.

11.6.8 Remark. In general, as defined, a function being continuous means it is continuous at
each point; the translation-invariance of vector topologies4 provides yet another situation in
which behavior at or near 0 determines global behavior. In particular, continuity of a linear map
between topological vector spaces is equivalent to continuity at one point:

11.6.9 Theorem. A linear map A : X → Y for topological vector spaces X, Y is continuous if
and only if it is continuous at 0.

Proof. If A is continuous, then it is, by definition, continuous at 0.
To show the reverse implication, assume A is continuous at 0 and take a neighborhood

W ∈ UY (0). Continuity at 0 provides V ∈ UX(0) with A(V ) ⊂ W .
Fix x ∈ X and let x′ ∈ X be such that x′ − x ∈ V (i.e., x′ ∈ V + x). Then, by linearity,

A(x′ − x) = Ax′ − Ax ∈ W . Hence, A maps x+ V to Ax+W , which means A is continuous
at x. Since the only constraint on choice of x was that it was in X, A is continuous at each
point of X, and thus continuous.

We are led to a theorem which demonstrates that we can characterize continuity of linear
functionals in terms of their null space:

11.6.10 Theorem. If Λ is a nontrivial5 linear functional on a topological vector space X, then
the following are equivalent:

(a) Λ is continuous.

3”Where does the name functional come from?” In the preface to his 1910 treatise ”Leçons sur le calcul des
variations”, Jacques Hadamard expresses a bit of ”hand-wringing” over his choice to use some new language in
the face of ”the Weierstrass tradition”[1]; in particular, we find in this text the first use of the word ”functional”
as defined in these notes, as the French fonctionnel. In chapter 37, he takes care to explain the significance of
the terminology choice: ”De mme qu’il nous arrivait prcdemment d’assujettir le point variable tre situ dans un
certain volume, ou sur une certaine surface, etc., nous chercherons l’extremum d’une quantit qui dpend d’une
ou plusieurs fonctions arbitraires en assujettissant celles-ci un certain nombre de conditions, ou, comme nous
dirons souvent, se trouver dans un certain champ fonctionnel. Cette dernire locution (manifestement inspire
par l’analogie avec ce qui se passe pour les extrema ordinaires) ne devra d’ailleurs tre considre que comme un
synonyme de la premire: le champ fonctionnel est, par dfinition, l’ensemble des fonctions (ou des systmes de
fonctions) qui satisfont aux conditions donnes.”

Not surprisingly, in his essay The Language Crisis[2], Hadamard takes the stance that mathematicians, in par-
ticular, should work very hard to avoid multiple meanings for the same technical word (lamenting that ”conjugate”
has two meanings even to the algabraist), as well as many words for the same concept (”integral” used as the
solution of an integral, for example). I suppose it is a testament to his dire concern for consistency and clarity
that we still use his word today, even in the absence of understaning its source.

4Recall that Ta and Mλ are homeomorphisms of a topological vector space X onto itself.
5That is, there exists an x ∈ X such that Λx 6= 0.
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(b) N (Λ) is closed.

(c) N (Λ) is not dense in X.

(d) Λ is bounded on a neighborhood of 0.

Proof. We shall show that (a)⇒(b)⇒(c)⇒(d)⇒(a).

(a)⇒(b): Assume Λ is continuous. Then N (Λ) = Λ−1({0}) is the continuous preimage of a closed
set, and is therefore closed. Thus (a) implies (b).

(b)⇒(c): Assume N (Λ) is closed. By the nontriviality assumption, N (Λ) = N (Λ) 6= X, so N (Λ)
is not dense in X, and (b) implies (c).

(c)⇒(d): Assume N (Λ) is not dense in X, and so X\N (Λ) has a nonempty interior. We take
x ∈ (X\N (Λ))o, and select a balanced neighborhood V of 0 such that (x+V )∩N (Λ) = ∅.
By linearity of Λ, Λ(V ) ⊂ K is balanced, which implies that either Λ(V ) = K or Λ(V ) is
bounded.

Suppose Λ(V ) = K. Then Λ−1({Λx}) ∩ V is nonempty and there exists y ∈ V such that
Λy = −Λx. By linearity of Λ, Λ(x + y) = 0, from which we discern x + y ∈ N (Λ). This
contradicts our selection of V , and thus our supposition is false. Thus Λ(V ) is bounded
and (c) implies (d).

(d)⇒(a): By Theorem 11.6.9, it suffices to show that (d) implies that Λ is continuous at 0. We
begin by assuming (d) holds; that is, there is positive number M and a neighborhood V of
0 such that |Λx| < M for all x ∈ V . Let ε > 0 and set W := ε

M
V . Then the linearity of

Λ yields that x ∈ W implies |Λx| < ε
M
M = ε.
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