Functional Analysis, Math 7320
Lecture Notes from October 11, 2016

taken by Grant Getzelman

2.8 Warm Up

2.8.1 Problem. Let X be a Topogical Vector Space and ) a closed subspace, and F a finite
dimentional subspace. Show ) + F is closed.

Proof. Note that the Quoient topology is the final topology on the quotient space X'/} with
respect to the Quotient map q:&X — X'/, thus q is continuous. Recall that in the quotient
topology equivalence classes are defined by [z] = {z +y : y € YV}, thus ¢(z) =z + V. Given «
from the field IF from our Topogical Vector Space X', and z,z € X, then we have
agz) =a(z+)Y)=alz]|={ax+ay:y €V} ={ax+y:y € Y} = [azx] = q(ax)
qz+2)=z+z2+Y=[v+z]={z+2+y:yelt={r+2+2y:yc)}=
{az+ay:yeVt+{az+ay:ye Y} =z]+[z] =q(x+2)

Thus q is a linear map. Map F to q(F), and observe that q(F) is a finite dimentional vector
space and is closed by the linearity of q and the closedness of finite dimentional subspaces. As
0] ={y:y € YV}, thenq'(z) =2+ Y and q ' (q(F)) = Y + F. Lastly, recall that if q is
continuous then the preimage of a closed set is close hence ) + F is closed .

O

Notice how our tools make this proof so easy. Next we see how certain topologies imply the
existence of seminorms.

2.8.2 Theorem. Let A be an absorbing set and 4 the minkowski functional, the we have the
following results:

(a) Forany A\ >0 and xz € X, pa(Ax) = Apa(x).
(b) If A is convex, then 14 is subadditive.
(c) If A is convex and balanced, then 14 is a seminorm.

(d)If B:={x € X :pus <1}, and C:={x € X : uy < 1}, then B C A C C, and
fia = pp = jic

(e) If pis a seminorn on X, then p = uy with A= { z € X : p(x) < 1}.
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(f) If B C X is bounded, so is B.

Proof.  (a) Recall that a set A is absorbing if for every z € X there exist a t> 0 such that

(b)

x € tA. In particular if z = 0 then 0 € tA implies there exists an a € A and a t such that
at = 0 thus a =0, and 0 € A. Given A > 0, pa(A\x) =inf{t > 0: Az € tA} = Ainf{t >
0:xe€tA} = Apa(x).

We want to show for x,y € X that, pa(x+vy) < pa(z)+pa(y). Let € >0, t = pa(z) +e,
T n sy x+t

s s+ttt s+ts s+t

A by convexity. Thus pa(z +y) < s+t = pa(x) + pa(y) + 2¢. This is true for every

€ >0, hence pa(z +y) < pa(x) + pa(y).

s = pa(y) + €. Note, % cAandeca by defintion of j14.

ta is a seminorm if pa(x +y) < pa(z) 4+ pa(y) and pa(ax) = |ajpa(z), for all z,y € X
and scalers a.. The first part follows from part b. By assumption, A is convex absorbing
and balanced so given t € K we let t = |t/ + a with |a| = 1. Balacedness then implies

pa(te) = [tlpa(ar) = |tlpa(e).

B C A C Cclearly gives uc < ua < pup. To show equality let x € X, choose s and t such
that po(z) < s < t, then Telso MA(f) < 1 by defintion of C. Thus MA(?E) < ; <1
s s s

so % € B and pp(z) <t

This works for any s, t witht > s > uc(x) so pup(z) < pc(z). Thisimplies ue = pa = pp.

Consider A as defined by p, this A is Balanced. We also see A is convex if x,y,€ A,
0 <t<1,then p(tr+ (1 —t)y) < tp(x)+ (1 —t)p(y) we also know A is absorbing.
1
If z € X and s > p(z), then p(g) = —p(x) < 1. So pa(x) < s, and thus ps < p.
s s
On the other hand if 0 < ¢ < p(x), then p(%) > 1 and t~ 'z ¢ A. By the balanced-
ness of A, p(x)< ua(x). Lastly as A is absorbing we know p4(x) is finite for all x € X
We conclude p = ju4.
O

2.8.3 Remark. We can convert between seminorms and minkowsiki functionals of convex balaced
open neighborhoods.

2.8.4 Theorem. Let B be a convex balanced local open base in a Topological Vector Space X

then,

(a)
(b)

IfVeB, then V={xecX:pu(r) <1}

(v )ves is a family of continous seminorms that seperates points on X.

Proof. (a) If x € V, then by V being open and continuity of (o, x) — ax. We have % eV

for some t < 1. Thus py(xz) < 1. On the other hand, if x ¢ V and % € V then by the
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balancedness of V, if |¥| < 1 implies ;V C Vand z € V thust > 1. We conclude in
this case py(z) > 1.

(b) Next, uy is a seminorm by V € B using the preceding part, we set r > 0, z,y € X
from the triangle inequality, |y (x) — pv(y)| < py(x —y) and if x — y €rV scaling gives
py(x—1y) <r. Asr > 0 is the radius of the ball that characterizes the topology, then py is
continous. Moreover if z € X'\ {0}, then there is V€ B such that z ¢ V. So ;5 = {0},
and thus py separate points.

O

Next we characterize the topology induced by these seminorms.

2.8.5 Lemma. A seminorm p on a Topological Vector Space X is continuous, iff V(p,1) = {x €
X :p(x) < 1} is a bounded neighborhood of 0.

Proof. If p is continuous this is true by definition. Conversely suppose V(p,1) is a neighborhood

of 0. By scaling with r > 0, rV(p,1) = {x € X : p(z) < r}. Which gives a local base , obtained

as rV(p,1) = p~1(B,(0)). Moreover, given ¢ > 0, x € X and r = p(x), then if ¢ < €, we have

p(x + qV(p,1)) C r +B(0). Thus p is continuous at each = € X. O

2.8.6 Theorem. Let P be a family of seminorms on a vector space X that separates points,
1 1 1

and V(p,—) = {z : p(x) < —}. Let B be the collection B = {V = (\_, V(pi, —}, then B is a
n n n

convex balanced local base for a topology T on X which makes X a locally convex Topological
Vector Space, and

(a) Each p € P is continous.

(b) E C X is bounded iff each p is bounded on E.



