
Functional Analysis, Math 7320
Lecture Notes from October 11, 2016

taken by Grant Getzelman

2.8 Warm Up

2.8.1 Problem. Let X be a Topogical Vector Space and Y a closed subspace, and F a finite
dimentional subspace. Show Y + F is closed.

Proof. Note that the Quoient topology is the final topology on the quotient space X/Y with
respect to the Quotient map q:X → X/Y , thus q is continuous. Recall that in the quotient
topology equivalence classes are defined by [x] = {x+ y : y ∈ Y}, thus q(x) = x+ Y . Given α
from the field F from our Topogical Vector Space X , and x, z ∈ X , then we have

αq(x) = α(x+ Y) = α[x] = {αx+ αy : y ∈ Y} = {αx+ y : y ∈ Y} = [αx] = q(αx)

q(x+ z) = x+ z + Y = [x+ z] = {x+ z + y : y ∈ Y} = {x+ z + 2y : y ∈ Y} =

{αx+ αy : y ∈ Y}+ {αz + αy : y ∈ Y} = [x] + [z] = q(x+ z)

Thus q is a linear map. Map F to q(F), and observe that q(F) is a finite dimentional vector
space and is closed by the linearity of q and the closedness of finite dimentional subspaces. As
[0] = {y : y ∈ Y}, then q−1(x) = x + Y and q−1(q(F)) = Y + F . Lastly, recall that if q is
continuous then the preimage of a closed set is close hence Y + F is closed .

Notice how our tools make this proof so easy. Next we see how certain topologies imply the
existence of seminorms.

2.8.2 Theorem. Let A be an absorbing set and µA the minkowski functional, the we have the
following results:

(a) For any λ ≥ 0 and x ∈ X , µA(λx) = λµA(x).

(b) If A is convex, then µA is subadditive.

(c) If A is convex and balanced, then µA is a seminorm.

(d) If B := {x ∈ X : µA < 1}, and C := {x ∈ X : µA ≤ 1}, then B ⊂ A ⊂ C, and
µA = µB = µC .

(e) If p is a seminorn on X , then p = µA with A = { x ∈ X : p(x) < 1}.
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(f) If B ⊂ X is bounded, so is B.

Proof. (a) Recall that a set A is absorbing if for every x ∈ X there exist a t> 0 such that
x ∈ tA. In particular if x = 0 then 0 ∈ tA implies there exists an a ∈ A and a t such that
at = 0 thus a = 0, and 0 ∈ A. Given λ ≥ 0, µA(λx) =inf{t > 0 : λx ∈ tA} = λinf{t >
0 : x ∈ tA} = λµA(x).

(b) We want to show for x,y ∈ X that, µA(x+ y) ≤ µA(x)+µA(y). Let ε > 0, t = µA(x)+ ε,

s = µA(y) + ε. Note,
x

t
∈ A and

y

s
∈ A by defintion of µA.

t

s+ t

x

t
+

s

s+ t

y

s
=
x+ t

s+ t
∈

A by convexity. Thus µA(x + y) ≤ s + t = µA(x) + µA(y) + 2ε. This is true for every
ε > 0, hence µA(x+ y) ≤ µA(x) + µA(y).

(c) µA is a seminorm if µA(x+ y) ≤ µA(x) + µA(y) and µA(αx) = |α|µA(x), for all x, y ∈ X
and scalers α. The first part follows from part b. By assumption, A is convex absorbing
and balanced so given t ∈ K we let t = |t| + α with |α| = 1. Balacedness then implies
µA(tx) = |t|µA(αx) = |t|µA(x).

(d) B ⊂ A ⊂ C clearly gives µC ≤ µA ≤ µB. To show equality let x ∈ X , choose s and t such

that µC(x) < s < t, then
x

s
∈ C so µA(

x

s
) ≤ 1 by defintion of C. Thus µA(

s

t

x

s
) ≤ s

t
< 1

so
x

t
∈ B and µB(x) ≤ t.

This works for any s , t with t > s > µC(x) so µB(x) ≤ µC(x). This implies µC = µA = µB.

(e) Consider A as defined by p, this A is Balanced. We also see A is convex if x, y,∈ A,
0 < t < 1, then p(tx+ (1− t)y) ≤ tp(x) + (1− t)p(y) we also know A is absorbing.

If x ∈ X and s > p(x), then p(
x

s
) =

1

s
p(x) < 1. So µA(x) ≤ s, and thus µA ≤ p.

On the other hand if 0 < t ≤ p(x), then p(
x

t
) ≥ 1 and t−1x 6∈ A. By the balanced-

ness of A, p(x)≤ µA(x). Lastly as A is absorbing we know µA(x) is finite for all x ∈ X .
We conclude p = µA.

2.8.3 Remark. We can convert between seminorms and minkowsiki functionals of convex balaced
open neighborhoods.

2.8.4 Theorem. Let B be a convex balanced local open base in a Topological Vector Space X
then,

(a) If V ∈ B, then V = {x ∈ X : µV (x) < 1}

(b) (µV )V ∈B is a family of continous seminorms that seperates points on X .

Proof. (a) If x ∈ V, then by V being open and continuity of (α, x) 7→ αx. We have
x

t
∈ V

for some t < 1. Thus µV (x) < 1. On the other hand, if x 6∈ V and
x

t
∈ V then by the
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balancedness of V, if |1
t
| ≤ 1 implies

1

t
V ⊂ V and x ∈ V thus t > 1 . We conclude in

this case µV (x) ≥ 1.

(b) Next, µV is a seminorm by V ∈ B using the preceding part, we set r > 0, x, y ∈ X
from the triangle inequality, |µV (x)− µV (y)| ≤ µV (x− y) and if x− y ∈rV scaling gives
µV (x−y) <r. As r > 0 is the radius of the ball that characterizes the topology, then µV is
continous. Moreover if x ∈ X\{0}, then there is V∈ B such that x 6∈ V. So

⋂
V ∈B = {0},

and thus µV separate points.

Next we characterize the topology induced by these seminorms.

2.8.5 Lemma. A seminorm p on a Topological Vector Space X is continuous, iff V(p,1) = {x ∈
X : p(x) < 1} is a bounded neighborhood of 0.

Proof. If p is continuous this is true by definition. Conversely suppose V(p,1) is a neighborhood
of 0. By scaling with r > 0, rV(p,1) = {x ∈ X : p(x) < r}. Which gives a local base , obtained
as rV(p,1) = p−1(Br(0)). Moreover, given ε > 0, x ∈ X and r = p(x), then if q < ε, we have
p(x + qV(p,1)) ⊂ r +Bε(0). Thus p is continuous at each x ∈ X .

2.8.6 Theorem. Let P be a family of seminorms on a vector space X that separates points,

and V(p,
1

n
) = {x : p(x) <

1

n
}. Let B be the collection B = {V =

⋂n
i=1 V (pi,

1

n
}, then B is a

convex balanced local base for a topology T on X which makes X a locally convex Topological
Vector Space, and

(a) Each p ∈ P is continous.

(b) E ⊂ X is bounded iff each p is bounded on E.
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