
Functional Analysis, Math 7320
Lecture Notes from October 25, 2016

taken by Robert Mendez

Warm up

Let Z∞2 :=
⋃∞
n=1

(
Zn2 ×{0}∞

)
denote the family of sequences of 0’s and 1’s having only finitely

many nonzero terms.1 Further, let D be the set of values in [0, 1) that can be represented as the
ratio of a whole number and a power of 2, known as the dyadic rationals and explicitly defined

D :=

{
n∑
j=1

cj
2j

: cj ∈ {0, 1}, n ∈ N

}
.

We note that we may see any point x = (xj)
∞
1 in Z∞2 as a point in D simply by a replacing the

cj’s in the dyadic expression for the xj’s, with cj = xj for all j ∈ N; that is, let

β : Z∞2 → D

(xj)
∞
1 7→

n∑
j=1

xj
2j

In this way, we may see the points of Z∞2 as the binary ”decimal” representation–perhaps
”bicimal”?–of the dyadic rationals. The map β is not a homomorphism, for addition in Z∞2
(as a vector space over the field Z2) occurs only component-wise, whereas in D and in the
bicimals, addition may involve ”carrying.” Consider the points x = (1, 0, 0, 1, 0, 0, ...) and y =
(0, 1, 0, 1, 0, 0, ...) in Z∞2 , then their sum is

x (1, 0, 0, 1, 0, 0, ...)

+y +(0, 1, 0, 1, 0, 0, ...)

x+ y (1, 1, 0, 0, 0, 0, ...)

while

β(x) .10012

+β(y) +.01012

β(x+ y) .11102

1This notation is borrowed from the standard distinction between
∏∞

1 R =: Rω ≡ Rℵ0 ≡ R|N| and R∞ ⊂ Rω,
used in [?], for example.
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In proving today’s primary theorem, we may think of the points in Z∞2 as being endowed with
the addition given by x⊕2 y defined β−1

(
β(x) + β(y)

)
.

Warm up 2

Last time, we concluded a characterization of locally convex topological vector spaces in terms
of an inducing family of seminorms. As we begin the final section of this chapter of study,
we recall that each topological vector space X is regular–that is, given a point x ∈ X and a
neighborhood U of x, there is a neighborhood V of x whose closure is in the interior of U2.
We demonstrated this in our discussion on separation properties, using the continuity of addi-
tion to give the existence of neighborhoods which sum within specific neighborhoods. Explicitly,
choosing x = 0 without loss of generality and given V ∈ U , there exists W ∈ U such that
W +W ⊂ V . In fact, repeated applications provide that, for any n ∈ N, there exists W ′ ∈ U
such that W ′ +W ′ + · · ·+W ′︸ ︷︷ ︸

n summands

⊂ V .

In particular, we will consider a sequence {Vn} of open, balanced neighborhoods of 0 such
that each Vn subsumes the sum of four copies of Vn+1. This warm up prepares us for the proof
of our first theorem as we begin our discussion on metrization of topological vector spaces.

3 Metrization

Recall that a topological space (X, τ) is said to be metrizable if there exists a metric on X which
induces its topology. In other words, the local balls given by a metric d on X provide a basis for
τ . In such a case, the open balls

(
B 1

n
(0)
)
n∈N give a local base for X; thus, the existence of a

countable local base is a necessary condition for metrizability in a topological vector space.
As it turns out, this condition is also sufficient. Rudin makes use of the existence of the ”self-

summing subsets” in any TVS neighborhood mentioned above to prove the following theorem.

3.0.1 Theorem. Let X be a topological vector space with a countable local base. Then there
exists a metric d such that

(a) every open set in τ is the union of open balls with respect to d;

(b) the open balls {Br(0)}r>0 are balanced;

(c) d is (translation) invariant, so that for x, y, z ∈ X, d(x+ z, y + z) = d(x, y);

(d) if X is locally convex, then d can be chosen so that the open balls {Br(0)}r>0 are convex.

3.0.2 Remark. As alluded to in the warm up, we shall make use of a family of open, balanced
sets with some proscribed properties. Before we begin our proof proper, the following lemma
introduces a useful property of such families.

2A regular topological space is equivalently characterized as having the property that any closed set and point
outside of it can be separated by disjoint open sets; this is the essence of Theorem 2.1.6 in the 22 September
2016 notes.
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3.0.3 Lemma. Let X be a topological vector space. Define V0 := X and suppose {Vn}∞n=0 is a
family of open, balanced neighborhoods of 0 with the property that

Vn + Vn + Vn + Vn ⊂ Vn−1 for all n ∈ N.

Then, for nonnegative integer n and any finite increasing sequence of natural numbers j1, j2, . . . , jN ,

Vn+j1 + Vn+j2 + · · ·+ Vn+jN ⊂
Vn+j1 + Vn+j1 + Vn+j2 + Vn+j2 + · · ·+ Vn+jN + Vn+jN ⊂ Vn.

Proof. Let {Vn} be as in the hypothesis. The first inclusion is immediate, and it is clear that
Vn+j ⊂ Vn for all j ∈ N; we offer an inductive proof, beginning with the case where N = 2.

(N = 2) Let n be a nonnegative integer and j1 < j2 be natural numbers. Then

Vn+j1 + Vn+j1 + Vn+j2 + Vn+j2 ⊂ Vn+1 + Vn+1 + Vn+1 + Vn+1 (since j1 ≥ 1)

⊂ Vn. (by hypothesis)

( Induction
hypothesis) Assume that for n ∈ N and any increasing indexed set {ji}N1 ⊂ N of order at most K we

have that
Vn+j1 + Vn+j1 + Vn+j2 + Vn+j2 + · · ·+ Vn+jN + Vn+jN ⊂ Vn.

Let n be a nonnegative integer and {ji}K+1
1 ⊂ N be increasing. Then the set {ji}K+1

2 is
of order K and

Vn+j1 + Vn+j1 +

2K terms︷ ︸︸ ︷
Vn+j2 + Vn+j2 + · · ·+ Vn+j(K+1)

+ Vn+j(K+1)
⊂ Vn+j1 + Vn+j1 + Vn+j2−1

⊂ Vn+j1 + Vn+j1 + Vn+j1
⊂ Vn.

We now proceed with the proof of the main theorem.

Proof. We shall induce a partition on X which defines a distance from each point to 0, from which
the distance between arbitrary points will be given by translation. To develop our partition, we
start with a countable local basis at 0 that ”shrinks fast enough” to exhibit some useful qualities.

Take V1 ∈ U to be any balanced, open neighborhood of 0, and set V0 := X. For n ∈ N, let
Vn+1 ∈ U be balanced and open with the property that

Vn+1 + Vn+1 + Vn+1 + Vn+1 ⊂ Vn,

for which we have already shown existence. The family {Vn}n∈N is a balanced local base for X,
and if X is locally convex, each Vn may be taken to be convex.

Define N ∈ P(N) to be the the family of finite subsets of N, N = {J ∈ N : |J | < ∞},
and let P := V0 ∪ {A ∈ U : A = Vj1 + Vj2 + · · · + VjN , ji ∈ J ⊂ N}, the family of finite sums
of elements in our local base, taken without summand repetition. Associate with each A ∈ P
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the index set JA ⊂ N, so that we may write A =
∑

j∈JA Vj. By construction of {Vn} and the
preceding lemma, we note that for A ∈ P with increasing indices ji ∈ JA,

A = Vj1 + Vj2 + · · ·+ VjN
⊂ Vj1−1,

Additionally, note that the elements of P are totally ordered under set inclusion. That is,
for distinct A,B ∈ P , either A ( B or B ( A. Taking (ji)

N1
i=1 = JA and (ki)

N2
i=1 = JB to be

increasing, we compare elements ji and ki and identify the least index η such that jη 6= kη. Since∑η−1
i=1 Vji =

∑η−1
i=1 Vki , we have that

η−1∑
i=1

Vji + Vjη ⊂ A (
η−1∑
i=1

Vji + Vjη−1

and
η−1∑
i=1

Vji + Vkη ⊂ B (
η−1∑
i=1

Vji + Vkη−1.

Without loss of generality, assume jη > kη. Then Vjη ( Vkη and Vjη−1 ⊂ Vkη , and we have

A (
η−1∑
i=1

Vji + Vjη−1 ⊂
η−1∑
i=1

Vji + Vkη ⊂ B,

giving the strict inclusion of the claim.
This total ordering is key in producing the partition we set as our initial goal, but first we give

our sets A ∈ P an indexing that more clearly expresses the ordering.

Let Z∞2 :=
⋃∞
n=1

(
Zn2 × {0}∞

)
, as in the warm up. Then the function

φ : P → Z∞2
A 7→ φ(A)

defined by the coordinate functions

φj(A) =

{
1 if j ∈ JA,
0 otherwise

gives a natural bijection between P\V0 and the dyadic rationals, which we extend to all of P via
ρ := β ◦ φ:

ρ : P → D ∪ {1}

A 7→

{
1 if A = V0,∑n

j=1
1
2j
φj(A) otherwise.
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We see that ρ is monotonic, giving ρ(A) < ρ(B) if and only if A ⊂ B for all A,B ∈ P , and thus
ρ preserves the total ordering on P . For any r ∈ D ∪ {1}, we may write Ar to indicate the set
ρ−1(r).

This provides our partition, given by the quotient map

π : X → [0, 1]

x 7→ inf
A∈P
{ρ(A) : x ∈ A},

from which we define our metric
d(x, y) := π(x− y).

Before we prove that d satisfies our requirements, we state and prove the following claim: For
r, s ∈ D, Ar + As ⊂ Ar+s.

We consider φ(Ar), φ(As) ∈ Z∞2 , and let k ∈ N be the least index such that φk(Ar) =
φk(As) = 1. The lemma ensures that

Ar + As =
∞∑
j=1

φj(Ar)Vj +
∞∑
j=1

φj(As)Vj

=
k−1∑
j=1

(
φj(Ar) + φj(As)

)
Vj + Vk + Vk︸ ︷︷ ︸

since φk(Ar)
=φk(As)=1

+
∞∑

j=k+1

(
φj(Ar) + φj(As)

)
Vj︸ ︷︷ ︸

each Vj appears as a
summand at most twice

⊂
k−1∑
j=1

(
φj(Ar) + φj(As)

)
Vj + Vk−1;

Note that adding r and s in binary notation means that φk(Ar) = φk(As) = 1 forces a
”carry”; this gives rise to two cases.

Case 1 If φk−1(Ar) = φk−1(As) = 0, then that carried value sets φk−1(Ar+s) = 1 and φj(Ar+s) =
φj(Ar) + φj(As) for j ∈ Jk − 1K. If If φk−1(Ar) = φk−1(As) = 0, it follows that
φk−1(Ar+s) = 1 and

k−1∑
j=1

(
φj(Ar) + φj(As)

)
Vj + Vk−1 =

k−1∑
j=1

φj(Ar+s)

⊂
∞∑
j=1

φj(Ar+s)

= Ar+s.

Case 2 On the other hand, if φk−1(Ar) 6= φk−1(As), or, equivalently, φk−1(Ar) + φk−1(As) = 1,
then this induces another carry; the number of carries depends on the number of consecutive
1’s in the binary notation.

Let m be the greatest integer such that φk−j(Ar) + φk−1(As) = 1 for all j ∈ JmK.
This implies that φk−m−1(Ar) = φk−m−1(As) = 0, since the definition of m gives that
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φk−m−1(Ar)+φk−m−1(As) 6= 1 and the definition of k gives that φk−m−1(Ar) and φk−m−1(As)
cannot be simultaneously 1.

Ar + As ⊂
k−1∑
j=1

(
φj(Ar) + φj(As)

)
Vj + Vk−1

=
k−m−1∑
j=1

(
φj(Ar) + φj(As)

)
Vj +

k−1∑
j=k−m

Vj + Vk−1

⊂
k−m−1∑
j=1

(
φj(Ar) + φj(As)

)
Vj + Vk−m−1 (by the lemma)

⊂
k−m−1∑
j=1

φj(Ar+s)Vj +
∞∑

j=k−m

φj(Ar+s)Vj

= Ar+s.

Our claim of subadditivity is shown.
We turn our attention to demonstrating properties of d:

(Translational
invariance ) Let x, y, z ∈ X. Then

d(x+ z, y + z) = π
(
(x+ z)− (y + z)

)
= π(x− y)

)
= d(x, y)

It follows that any claim about d(x, y) over X reduces to a claim about d(x̃, 0) over X,
and d(x̃, 0) is just π(x̃).

(Positive
definite) The range of π gives d(x, y) = π(x̃) ≥ 0 for all x̃ = x − y ∈ X. Since 0 ∈ Ar for all

r ∈ D, π(0) = inf{r ∈ D} = 0. For nonzero x ∈ X, there is some natural number k such
that 4kx /∈ V1; since x ∈ Vn implies 4x ∈ Vn−1, which in turn implies that 4(4x) ∈ Vn−2
and, inductively, 4n−1 ∈ V1, we have that x /∈ Vk; it follows that π(x) ≥ 2−k > 0.

(Symmetric) Since each of the sets Ar is balanced, we have that π−1(r) = −π−1(r), and thus π(x) =
π(−x) for all x ∈ X.

( Triangle
inequality) Let x, y, z ∈ X. We would like to show that d(x, z) ≤ d(x, y)+d(y, z), which is equivalent

to π(x− z) ≤ π(x− y) + π(y − z). Setting a := x− y and b := y − z, and substituting,
these are equivalent to

π(a+ b) ≤ π(a) + π(b).

If π(a) + π(b) = 1, there is nothing to show; assume π(a) + π(b) = 1− 2ε for some ε > 0.
There exist r, s ∈ D such that

r − ε < π(a) < r and s− ε < π(b) < s,
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giving r + s < 1. We have that a ∈ Ar and b ∈ As, and subadditivity in P yields
a + b ∈ Ar + As ⊂ Ar+s, from which we ascertain that π(a + b) ≤ r + s. Since the
resulting inequalities

π(a+ b) ≤ r + s < π(a) + π(b) + 2ε

hold true for any ε, we conclude that π(a+b) ≤ π(a)+π(b) and thus, d honors the triangle
inequality.

Thus, d is a translation-invariant metric on X, and part (c) is proved. The open balls in τd
centered at 0 are given by

Bδ := {x : π(x) < δ} =
⋃
r<δ
r∈D

Ar;

They are the union of sums of balanced the balanced sets Vn, and thus balanced, satisfying part
(b) of the theorem. If X is locally convex, then the Vn’s were chosen convex, and the open balls
Bδ are convex, giving part (d).

Since A2−n = Vn for all n ∈ N, Bδ(0) ⊂ Vn for δ < 2−n, giving τd ⊂ τ . Given a δ > 0, we
may choose n ∈ N so that δ > 2−n, and the reverse inclusion yields τ = τδ by the compatible
local bases and invariance, and the proof is complete.

3.0.4 Remark. It may be interesting to note that, while the elements of the local base {Vn} were
shown to be open in the topology induced by d, no Vn is a Bδ; consider, for example, V1. The
set B1/2(0) =

⋃
r<1/2Ar, so, dyadic r < 1

2
has the property that φ1(Ar) = 0; it follows that

⋃
r<1/2
r∈D

Ar =
∞∑
n=2

Vn

= V2 + V3 +
∞∑
n=4

Vn

⊂ V2 + V3 + V3

( V2 + V2 + V2

( V2 + V2 + V2 + V2

⊂ V1

and B1/2(0) is a strict subset of V1. For δ > 1
2
, the density of D in [0, 1] provides r ∈ D such

that 1
2
< r < δ, and V1 ( Bδ(0). A similar argument excludes Vn from {Bδ(0)} for all n ∈ N.
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