
Functional Analysis, Math 7320
Lecture Notes from October 27, 2016

taken by Nikolaos Karantzas

Warm up: Could we define completeness for topological vector spaces? What is the Cauchy
property in a topological vector space?

2.9.9 Definition. A sequence (xn)n∈N in a topological vector space X is called Cauchy if for
each U ∈ U , there is N ∈ N such that for all n,m ≥ N , xn − xm ∈ U .

So, we say a topological vector space X is complete if every Cauchy sequence converges.

3 Completeness

3.1 Baire categories

3.1.1 Definition. (a) Let X be a topological vector space. A subset E ⊂ X is called nowhere
dense if E

◦
= ∅, or equivalently, if X \ E is dense in X.

(b) A subset E ⊂ X is of first category in X if E = ∪∞n=1En with each En nowhere dense.
Otherwise, E is of the second category.

(c) X is called a Baire space if for each sequence (Un)n∈N of open, dense sets in X, then
∩∞n=1Un is dense in X.

3.1.2 Remark. It is worth noticing that if E can be written as a countable union as above, then
it is of second category if at least one of the component sets is not nowhere dense.

3.1.3 Examples. (a) The set {1/n : n ∈ N} is nowhere dense in R, since although its points
get arbitrarily close to 0, the closure {1/n : n ∈ N} ∪ {0} has empty interior.

(b) The rational numbers are of first category as a subset of the reals but also as a space,
which means they do not form a Baire space.

(c) The Cantor set is of first category as a subset of the reals, but as a space, it is a complete
metric space and is thus a Baire space, as we will see from the Baire category theorem in
what follows.

Next we formulate elementary properties.

3.1.4 Lemma. Let X be a topological vector space.
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(a) If each En ⊂ X, n ∈ N is of first category, then so is ∪∞n=1En.

(b) If E ⊂ X is closed and E◦ = ∅, then E is of first category.

3.1.5 Lemma. Let X be a topological vector space. Then X is a Baire space if and only if for
each sequence (Fn)n∈N with Fn closed and (∪∞n=1Fn)◦ 6= ∅, then F ◦n 6= ∅ for at least one Fn.

Proof. Let X be a Baire space and let (Fn)n∈N be a sequence of closed sets in X. Moreover,
assume F ◦n = ∅ for all n ∈ N, or equivalently X \ (Fn)◦ = X. This implies

(X \ Fn) = X,

and since X is a Baire space, we have

X =

(⋂
n∈N

(X \ Fn)

)
=

(
X \

⋃
n∈N

Fn

)
,

which means that (∪n∈NFn)◦ = ∅. Thus, if (∪n∈NFn)◦ 6= ∅, then it must be that at least one Fn
has nonempty interior.

Conversely, given (Un)n∈N of open dense sets, then Fn = X \Un defines a sequence (Fn)n∈N
of closed sets with F ◦n = ∅ and so (∪n∈NFn)◦ = ∅, which in turn gives (∩n∈NUn) = X, by De
Morgan and hence X is by definition a Baire space.

At this stage, and before stating the Baire category theorem, we state two variants of Cantor’s
intersection theorems.

3.1.6 Theorem. (Cantor’s intersection theorem) A decreasing nested sequence of non-empty
compact subsets of a compact topological space X has non-empty intersection. In other words,
if (Bn)n∈N is a sequence of non-empty compact subsets of X satisfying

B1 ⊃ B2 ⊃ . . . ⊃ Bk ⊃ Bk+1 ⊃ . . . ,

then ⋂
n∈N

Bn 6= ∅.

Proof. Suppose that ∩n∈NBn = ∅ and let Vn = X \ Bn for all n ∈ N. Note that (Vn)n∈N is an
open cover of X, as

X = X \
⋂
n∈N

Vn =
⋃
n∈N

(X \ Vn) =
⋃
n∈N

Vn.

We extract a finite subcover of X and since V1 ⊂ V2 ⊂ . . ., there must exist a k ∈ N such that
Vk = X. Then Bk = X \ Vk = ∅, contradicting the non-emptiness of all the Bn’s. Thus the
intersection is non-empty.

3.1.7 Theorem. (Cantor’s intersection theorem for complete metric spaces) Let X be a complete
metric space, and let (Bn)n∈N be a decreasing nested sequence of non-empty closed subsets of
X, with diam Bn → 0. Then ∩n∈NBn 6= ∅.
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Proof. In each set Bn, we choose a point xn. Then the sequence (xn)n∈N is Cauchy since
if m,n ≥ N , we have d(xm, xn) ≤ diam Bn, which tends to zero as N → ∞. Since X is
complete, the sequence (xn)n∈N has a limit x. But since xn ∈ Bn for all n ≥ N , and Bn is
closed, we have x ∈ Bn. This holds for all n and so we have x ∈ ∩n∈NBn.

We are now ready to state and prove the Baire category theorem.

3.1.8 Theorem. (Baire category theorem) A topological vector space X is a Baire space if

1. X is locally compact.

2. The topology on X is induced by a complete metric.

Proof. 1. Let X be a locally compact topological vector space and let V1, V2, . . . be dense,
open subsets of X. Also, let B0 6= ∅ be an open subset of X. We want to show that
∩n∈NVn is dense in X, or equivalently, that it intersects B0.

To this end, we notice that B0 ∩ V1 is open in X, and non-empty, as B0 is open and V1 is
dense. So we can find an open set B1 with compact closure such that B1 ⊂ B0 ∩ V1, by
local compactness and Hausdorff. Now B1 ∩ V2 is open and non-empty as above, and so
again, we can find an open and non-empty B2 with compact closure such that B2 ⊂ B1∩V2

(we notice that B2 ⊂ B0 ∩ V1 ∩ V2 as well).

In this recursive manner, we choose a sequence (Bn)n∈N of non-empty open subsets of
X with Bn compact for all n, such that for each n ∈ N, Bn+1 ⊂ Vn+1 ∩ Bn. We
then notice that (Bn)n∈N satisfies the assumptions of Cantor’s intersection theorem and so
K = ∩n∈NBn 6= ∅. Since K ⊂ ∩n∈NVn, we have B0 ∩ (∩n∈NVn) 6= ∅, which is precisely
what we aimed for.

2. Assuming the topology on X is induced by a complete metric and in the light of the proof
in part (1), we now choose Bn, n ∈ N, to be an open ball of radius 1/n and obtain
∩n∈NBn 6= ∅, this time using Cantor’s intersection theorem for complete spaces.

3.2 Uniform boundedness

We first show that uniform boundedness is a consequence of equicontinuity.

3.2.9 Definition. Let X, Y be topological vector spaces and let Γ be a collection of linear maps
from X to Y . We say that Γ is equicontinuous if for each V ∈ UY (neighborhood of zero in Y ),
there is W ∈ UX such that for all A ∈ Γ, A(W ) ⊂ V .

Next we see how equicontinuity implies uniform boundedness.

3.2.10 Proposition. Let X, Y be topological vector spaces and let Γ be an equicontinuous
collection of linear maps from X to Y . Then, for each bounded set E ⊂ X, there is a bounded
set F ⊂ Y such that for all A ∈ Γ, A(E) ⊂ F .
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Proof. Let E ⊂ X be bounded and set F = ∪A∈ΓA(E). It suffices to show F is bounded. To
this end, we consider any V ∈ UY and notice that by equicontinuity, there is W ∈ UX such that
for each A ∈ Γ, A(W ) ⊂ V . By the boundedness of E, there is s > 0 with E ⊂ tW , for all
t > s. Consequently, for all A ∈ Γ and for all t > s,

A(E) ⊂ A(tW ) = tA(W ) ⊂ tV,

and thus, by taking unions, F ⊂ tV , which means F is bounded.

Next, we state the Banach-Steinhaus theorem.

3.2.11 Theorem. (Banach-Steinhaus) Let X, Y be topological vector spaces and let Γ be a
collection of continuous linear maps from X to Y . If

B = {x ∈ X : {Ax : x ∈ Γ} is bounded}

is of second category, then B = X and Γ is equicontinuous.

Proof. By our assumption, B is not the countable union of nowhere dense sets. Let U ,W be
balanced neighborhoods of zero in Y such that U + U ⊂ W , and let

E =
⋂
A∈Γ

A−1(U)

= {x ∈ X : for all A ∈ Γ, Ax ∈ U}.

We notice that by continuity of each A, E is closed. Now by the boundedness assumption, for a
given x ∈ B, there is n ∈ N with

{Ax : A ∈ Γ} ⊂ nU ⊂ nU ,

and by comparison with the definition of E and scaling, x ∈ nE. Thus, B ⊂ ∪n∈NnE. From B
being of second category, at least one of the nE’s is of second category and so E is of second
category (since scaling by n is a homeomorphism). Hence, since E = E, there is an interior
point, say x ∈ X, and E − x contains a neighborhood V ∈ U . Consequently, for each A ∈ Γ,
V ⊂ E − x satisfies

A(V ) ⊂ A(E)− Ax ⊂ U − U = U + U ⊂ W ,

since U is balanced. Thus, Γ is equicontinuous. Finally, from the preceding proposition, we
obtain that Γ is uniformly bounded and hence B = X.

The following version of the Banach-Steinhaus theorem is called uniform boundedness principle.

3.2.12 Theorem. (Uniform boundedness principle) Let Γ be a family of continuous linear map-
pings from a Banach space X into a normed space Y . If for every x ∈ X,

sup
A∈Γ
‖Ax‖ <∞,

then supA∈Γ ‖Γ‖ <∞.
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Proof. Let E = {x ∈ X : supA∈Γ ‖Ax‖ ≤ 1}. Since

X =
⋃
n∈N

nE

and X is complete, Baire’s theorem implies that E has an interior point x0. Then E − x0

is a neighborhood of 0 and so there exists ε > 0 so that Bε(0) ⊂ E − x0. Hence, for any
0 6= x ∈ Bε(0) and A ∈ Γ, we have

‖Ax‖ ≤ ‖A(x+ x0)‖+ ‖Ax0‖ ≤ 1 + sup
A∈Γ
‖Ax0‖.

Thus, we have

sup
A∈Γ
‖A‖ ≤ 1 + supA∈Γ ‖Ax0‖

ε
.

3.2.13 Example. An important implication of the Banach-Steinhaus theorem is the divergence
of Fourier series of C0 functions. The general discussion of L2 functions shows that a Cauchy
sequence of L2 functions has a subsequence converging pointwise. Indeed, this proves the exis-
tence of the limit when we prove completeness of L2. Moreover, this applies to Fourier series, but
does not say anything about the pointwise convergence of the whole sequence of partial sums,
and does not address uniformity of the pointwise convergence. Specifically, there is f ∈ C0(S1)
whose Fourier series ∑

n∈Z

f̂(n)einx, with f̂(n) =
1

2π

∫ 2π

0

e−inxf(x)dx,

diverges at zero.

Proof. To set our way towards satisfying the Banach-Steinhaus premises, consider the functionals
given by the partial sums of the Fourier series of f , evaluated at 0, i.e.,

TN(f) =
∑
|n|≤N

f̂(n).

Then, we can get an upper bound by

|TN(f)| ≤ 1

2π

∫ 2π

0

∣∣∣∣∣∣
∑
|n|≤N

e−inx

∣∣∣∣∣∣ |f(x)|dx

≤ ‖f‖C0

1

2π

∫ 2π

0

|DN(x)|dx

= ‖f‖C0‖DN‖L1(S1),

where DN denotes the Dirichlet kernel
∑
|n|≤N e

−inx. Next, we aim to show that in the above

inequality what actually holds is equality, or equivalently, that |TN | = ‖DN‖L1(S1), but also that
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‖DN‖L1(S1) → ∞, as N → ∞. In doing so, we notice that by summing the finite geometric
series we obtain

DN(x) =
sin
(
N + 1

2

)
x

sin
(
x
2

) ,

while since | sin(t)| ≤ |t|, we can get a lower bound by∫ 2π

0

|DN(x)|dx ≥
∫ 2π

0

∣∣∣∣sin(N +
1

2

)
x

∣∣∣∣ 2

x
dx

=

∫ 2π(N+ 1
2)

0

| sin(x)|2
x
dx

≥
N∑
k=1

1

k

∫ 2πk

2π(k−1)

| sin(x)|dx

≥
N∑
k=1

1

k
→∞,

as N →∞. Thus, the L1 norms diverge. Now let g(x) = sign DN(x) and let gj be a sequence
of periodic functions with |gj| ≤ 1 and going to g pointwise. Then, by dominated convergence,

lim
j→∞

TN(gj) = lim
j→∞

∫ 2π

0

gj(x)DN(x)dx

=

∫ 2π

0

g(x)DN(x)dx

=

∫ 2π

0

|DN(x)|dx.

Lastly, by Banach-Steinhaus for the Banach space C0(S1), since there is no uniform bound M > 0
such that |TN | ≤M for all N , there exists f in the unit ball of C0(S1) such that

sup
N
|TNf | =∞.

In fact, the collection of such functions f is dense in the unit ball, and is a Gδ set. That is, the
Fourier series of f does not converge at 0.
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