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We study the open mapping theorem:

3.3.2 Theorem (Open Mapping Theorem). Let A be a map from F-space X to a topological
vector space Y which is continuous, linear and A(X) is second category of Y. Then, A(X) =Y,
A is an open map, and Y is an F-space.

Last lecture, we proved that A is an open map. As a consequence, we obtain A(X) =Y
since the only open subspace of Y is Y itself. We still need to show that Y is F-space.

Proof (continue). If A is one to one, since A is open, A~ is well defined and continuous.
Thus, A is homeomorphism from X to Y. Thus, Y is also F-space as same as X. Now, we
consider in the general case. From A being continuous linear map, N = A~!({0}) is a closed
subspace of X. Consider the quotient space X/N = {x + N : = € X} with the quotient map
q¢: X — X/N. Then ¢ is continuous and open. Define A : X/N — Y by A(x + N) = A(z)
(see the diagram below). Then A is one to one and onto. Moreover, A = A o ¢. For an
openset UinY, AW U)={z+N:A@x)eUl={z+N:zec AU} = ¢4 (U))
which is open in X/N by the continuity of A and openness of the qutient map. Thus, Ais a
continuous bijection. Next, if E is open in X/N, by continuity of ¢ , ¢7'(E) is open. Then,
A(E) = A(q(¢ " (E))) = A(g~'(E)) is open since A is open. Thus, A is homeomorphism. Since
q preserves completeness and invariant property under translation of the metric, the quotient space
X/N is also an F-space. By A being a homeomorphism, Y is an F-space.
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3.3.3 Remark. In the previous proof, we used the properties of fact that if NV is a closed subspace
of an F-space X, then the quotient space X/N is also an F-space. We provide more details
about quotient space.



For a topological vector space X and a closed subspace of NV of X, recall that [x] = {z+y:
y € N} is the coset of N containing x. Then,

X/N ={[z] 1z € X}

with the operation [z] + [y] = [z + y] and «a[z] = [az] for [z],[y] € X/N and a € R. This will
define the quotient vector space. Let ¢ : X — X defined by ¢(x) = [z]. We call ¢ the quotient
map. Then define the topology 7y on X/N as follows:

™~ ={U C X/N : ¢ "(U) is open in X}.
Then, 7 will be a topology on X/N and makes X/N . The following are interesting facts about
the quotient space (Check [2], p31).

e 7y makes X/N a topological vector space under the addition and multiplication as defined
above.

e The quotient map ¢ : X — X/N is linear, continuous, and open.
o If B is a local base of X, then By = {p(V) : V € B} is a local base of X/N.

e Local convexity, local boundedness, metrizability, and normability properties of X will be
inherited to X/N.

e X/N will be an F-space, or a Frechet space or a Banach space if X is.

Moreover, if d is an invariant metric on X. Define

p([z], [y]) = inf{d(z —y,2) : 2 € N}.
Then, we obtain

e p is well defined, i.e, it is not depends on the choices of x, y,
e p is an invariant metric, and

e The topology generated by p is 7.

Now, we are going to use the facts we have listed above to show that if X is an F' space, then
sois X/N.

Proof. Defining p as above, we have p is an invariant metric. We still need to show that p is
also complete. Let u,, be a Cauchy sequence in X/N. For ¢ = 1/2* and apply the definition of a
Cauchy sequence, we can inductively construct a subsequence uy, such that p(u,,, tn,,,) < 1/2k.
We will inductively choose z, € uy, so that d(zy, x111) < 1/2*. First, choose arbitrary z; € u,,.
After we have chosen x;, € wuy, we will choose xj.1. We can write u,, = [z;] and u,, , = [y]
for some y € wy,,,. Since p(un,, Un,,,) = inf{d(zy —y,2) : = € N} < 1/2% thereis z € N
such that d(x), — y,z) < 1/2*. By the invariant property, d(x) — v, 2) = d(xy,y + 2z) < 1/2%.
Then, we choose ;41 = y + 2 € [y] = Up,,,. By this construction, for k < I, we have
d(zg, 21) < d(Tp, Tpy1) + - +d(z_1,17) < szc 27 < 2/2%. This implies that x;, is a Cauchy
sequence in X and thus it converges to some x € X. Thus, u,, converges to g(z) by the
continuity of the quotient map ¢. Since a subsequence of a Cauchy sequence converges, it forces
the whole sequence converges to the same limit. This proved that p is a complete metric. O
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The open mapping theorem can be applied to specific cases. First, we consider the case when
A is linear continuous bijection and both X and Y are F-spaces.

3.3.4 Corollary. If A: X — Y is a bijection continuous linear map between F-spaces X and Y,
then A is homeomorphism.

Proof. From the statement, we have (i) X is an F-space X, (ii) A is continuous and linear
from X to a topological vector space Y, and (iii) A(X) = Y is an F-space and thus of the
second category in themselves by Baire's theorem. As a consequence, the open mapping theorem
concludes A is an open map. Since A is bijective, A™! is well defined. Since A is open, A1
is continuous. In conclusion, A is continuous and has a continuous inverse. Therefore, A is
homeomorphism. ]

3.3.5 Remark. (i) From the proof of the previous corollary, we also have any continuous linear
map between F-spaces is always open.
(i) If (X, 71) and (X, 1) are topological vector spaces which are both F-spaces. If 7, and 7, are
comparable, i.e, one is finer than the other, then both are equal. To prove this, with out loss
of generality, we assume that 7o C 71. Then, the identity map Id : (X, 71) — (X, 72) is linear
and continuous. By the corollary, Id is homeomorphism. Thus, 7y = 7. This suggests that any
F-space can not be compared to another. On the other hand, if (X, 77) is an F-space and 11 C 7
(or 5 € 71), (X, 72) can not be F-space.

More specifically, we consider consequences of the open mapping theorem on Banach spaces.

3.3.6 Remark. Let (X, || - ||x) and (Y,]| - ||) be normed spaces. If A is a continuous linear map
from X to Y, there exists M > 0 such that ||Az|y < M||z||x for all z € X.

3.3.7 Corollary. If X and Y are Banach spaces and A : X — Y is continuous linear bijection,
then there exist m, M > 0 with

mllz|x < |Az]] < M|[z]|x.

Proof. Since A is linear and continuous, the imidiate consequence is that there is M > 0 such
that
|Az|ly < M|lz|x

for all z € X. Since X is a Banach space, it is complete metric space and so F-space. Similarly,
since A is onto, A(X) =Y which is a Banach space. Thus, A(X) is F-space which also is of the
second category. Therefore, applying the open mapping theorem to the continuous linear map
A, we obtain A is an open map. Since A is one to one, A~! is well defined and thus continuous
by the openess of A. Therefore, there is M > 0 such that

1A ylx < Mllylly

forall y € Y. Let x € X. Since A is bijective, there is a unique y € Y such that y = Ax and
x = A"y = A~ Az. Replacing y by Az into the above inequality, we obtain

lz]lx < M| Az]y-
By choosing m = 1/M, we conclude that
mllzllx < [|Azlly < Mlz|x

as we desire. 0



3.3.8 Remark. (i) The previous theorem means norms on X and Y are equivalent.

(ii) Let || - |1 and || - ||2 be norms on a vector space X which both are complete norms generating
the same topology. Let Id : X — X be the identity map. Then Id is a continuous linear
bijection. By replacing Ax = Iz = x to the previous corollary, we have that

ml|zlls < flz]ly < M|z

On the other words, all norms in a Banach space X are equivalent.

3.4 Warm Up: Internal vs Interior

3.4.9 Definition. Let V' be a vector space, S C V. A point z € S is called an internal point if
for every y € V, there is ¢ > 0 such that {z +ry : |r| <e} C S.

3.4.10 Remark. A set S C V for which 0 is an internal point is absorbing because for all y € V/,
there is n € N such that y/n € S, ie., V =J —, nS.

3.4.11 Remark. If 0 is an interior point of a subset .S of a topological vector space X, then it has
a balanced open subset U such that 0 € U C S. In addition, X = UZO:1 nU. Let z € X. Hence,
x € nU for some n € N. Thus, %x € U. Since U is balanced, srel for all || < 1. Therefore,

an interior point is also an internal point. But, the converse is not true as the following examples.

3.4.12 Example. We provide some examples on R

Image of S,

1. In R?, for 0 € (0,7), let Ag = (—0/m,0/7)(cosb,sin@). Define S; = (Useo.n) A6) U
{(2,0) : x € (=1,1)}. Then, 0 is an internal point of S; but not interior point.

Image of Sy

2. Let Sy ={(z,y) 1y > 2*} U{(x,0) : x € R} U{(z,y) : y < —x?}. Then 0 is an internal
point but not interior point of S5.



3.4.13 Remark. In a finite dimensional topological vector space, interior points and internal points
in a convex set coincide (check [2]). Since a real or complex topological vector space of dimension
n is homeomorphic to R™ or C". It suffices to prove the statement in R™ and C". To get a
perspective about this statement, we consider in the case of R2. Let 0 be an internal point
of a convex set S C R?. Choose v; = (1,1) and v, = (1,—1). Note that these two vector
form a basis of R?. Since 0 is an internal point of S, there are positive real numbers r; and
r9 such that {av; : |a] < m} € S and {Bve : |B] < r3} € S. Choose r = min{ry,m}/2.
Then rvy = (r,7),—rvy = (—r,—71), 109 = (r,—r),—rve = (—r,r) € S since | £7| < nr
and | £ 7| < ry. Forany 0 <t <1, t(r,r) + (1 —t)(—r,7) = ((2t — 1)r,7) € S and
t(r,—r)+ (1 —t)(—r,—r) = ((2t — 1)r, —r) € S by the convexity. Again, by convexity, for any
0<t<0,t((2t—1)r,7)+ (1 —£)((2t — 1), —r) = (2t — 1), (2t — 1)7) € S. For (z,y) € R?
where |z| < r and y < |r|, choose t = (z/r+1)/2 and t = (y/r + 1) /2 which both are in [0, 1].
Thus, (z,y) = ((2t — 1)r, (2t — 1)r). Therefore, (0,0) € {(z,y) : |z| < r,|y| <r} € S which is
open. Therefore, 0 is an internal point. We can extend this idea to prove the statement for R™
and C". For an internal point of S which is not 0, we can replace S by S — .

3.5 The Closed Graph Theorem
3.5.14 Definition. Let f: X — Y. The graph of f is

L(f)y={(z, f(z):z e X} C X xY.

3.5.15 Theorem. Let X is a topological space and Y is a Hausdorff space. If f : X — Y is
continuous, then the graph of f, I'(f) is closed in the product topology.

Proof. Take Q@ = X x Y \ I'(f) and (z,y) € 2. Thus, y # f(z). By Hausdorff property of
Y, there exist disjoint open sets V, W such that f(x) € V and y € W. Since f is continuous,
f~Y(V) is open, and hence, f~'(V) x W is an open set in the product topology X x Y containing
(z,y). Moreover, if (a,b) € f~Y(V) x W, f(a) € V and b € W. Since V and W are disjoint,
fla) £ b, ie., f7H(V) x W C Q. Therefore, ) is open; hence, T'(f) = X x Y\ Q is closed. [

Under certain assumptions, we can show the converse of this theorem.

3.5.16 Theorem. Let A : X — Y be a linear map between F-spaces X and Y. Then A is
continuous if and only if the graph of f, I'(f) is closed.

Proof. We observe that if dx and dy are invariant metrices on X and Y respectively, then so is

d((x1,11), (X2, Y2)) = dx (21, 22) + dy (Y1, Y2).

Also, we note that compactness is preserved, so X x Y is an F-space. By linearity, I'(f) is a
subspace of X x Y. Assume that A is continuous, then I'(f) is closed, thus it is complete.
Hence, I'(f) is an F-space.

Assume that ['(f) is closed, that is F-space. Let II; : I'(f) — X be a projection map on X
and Il : X XY — Y be a projection map on Y. We see that II; is a bijective continuous map.
Thus, the composition I, o II; ! = A is continuous. O
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3.5.17 Remark. To show that the graph of f is closed, we can verify that if z, — x, then

flan) = f(x).

4 Convexity

Next, we study spaces through their duals.

4.1 Hahn Banach Theorem

For a topological vector space X, a real (or complex) functional on X is a function f: X — R
(or C), that is f maps an element in X to a real number (or a complex number). Assume that
we have a linear functional f defined on a subspace of the whole space. Under some constrains
of f, we might be able to extend f to a functional on X. The Hanh Banach Theorem shows that
a function on a subspace can be extended to a functional on the whole space if it is dominated
by a nice functional on the whole space.

4.1.1 Theorem (Hahn Banach Theorem on R). Let V be a real vector space and p : V — R
satisfying

e p(z+y) <p(x) +py)
* plaz) = ap(z).

Let Y C V be a linear subspace and F' a linear functional f : X — R such that f < p|y. Then,
there is a linear functional F' : V — R such that Fy = f and also F' < p.
References

[1] Rudin, Walter., Functional Analysis, 2nd, McGraw Hill Education, 1973

[2] Kantorovitz, Shmuel., Introduction to Modern Analysis, Oxford University Press, 2003, p.
134.



	Warm Up: Internal vs Interior
	The Closed Graph Theorem
	Convexity
	Hahn Banach Theorem


