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3 Completeness

3.1 Open Mapping Theorem

3.1.14 Theorem. Open Mapping Theorem
Let X be an F-space, Y be a topological vector space. Let A : X → Y be a continuous, linear

map, and A(X) is of 2nd-category of Y. Then, A(X) = Y , A is open, and Y is an F-space.

Proof. (cont’d)
Last time we showed that A is an open map, and A(X) = Y . We still need to show Y is an

F-space. Notice that if A is one-to-one, then A is a homeomorphism. This is because A(X) = Y
implies A is a bijective, and A being a continuous, open map implies that its inverse A−1 is
continuous.

However, in general, A is not always one-to-one. To get around this, we will construct a 1-1
function between Y and an F-space we already know.

First, define a quotient map q : X → X/N ,where N = A−1({0}). Note that q is linear, and
onto, and the kernel N is a closed subsace of X.

Define Ã : X/N → Y , Ã(x+N) = Ax. Then Ã is a bijection, and A = Ã ◦ q

X Y

X/N

A

q
Â

To show that Ã is open, take a set E open (w.r.t final topology) in X/N . By continuity of
quotient map q, q−1(E) is open.
=⇒ A(q−1(E)) is open because A is open (as shown earlier)
=⇒ Ã is open, continuous and 1-1
=⇒ Ã is homeomorphism
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What’s left to show is X/N is an F-space.

For translation-invariance of X/N , let d be the translation-invariant metric on X, and define
a mtric ρ on X/N by:

ρ(q(x), q(y)) = inf{d(x− y, z) : z ∈ N}

Then ρ is the invariant metric on the quotient space X/N .

For completeness of X/N , let {un}n be a Cauchy sequence in X/N (with respect to the
metric ρ), then there exists a subsequence {uni

}i such that ρ(uni
, uni+1

) < 2−i. Since q is an
onto map, we can select xi such that q(xi) = uni

, and d(xi, xi+1) < 2−i. Then, xi is a Cauchy
sequence, hence, by the completeness of metric d, xi converges to some element x ∈ X. Since q
is continuous, uni

= q(xi) converges to q(x) ∈ X/N . The Cauchy sequence un has a convergent
subsequence uni

, so un also coverges. Hence, X/N is complete in the metric ρ.

3.1.15 Corollary. Each bijective, continuous, linear map between F-spaces is a homeomorphim

Proof. Let X, Y be F-spaces, and f : X → Y be a bijective, continuous, linear map. Since f is
CTS and linear, by Open Mapping Theorem, f is an open map. Hence, f−1 is continuous. We
conclude that f is a homeomorphism.

3.1.16 Remark. In the corollary above, the inverse f−1 is also bounded.

3.1.17 Corollary. Let X, Y be Banach spaces, and A : X → Y be a continuous, linear bijection.
Then, there exists constants M , m > 0 such that for all x ∈ X:

m‖x‖X ≤ ‖Ax‖Y ≤M‖x‖X

Proof. First, A is continuous and linear, so the map A is bounded. Therefore, by definition of
boundedness of an operator norm, there exists a constant M > 0 such that for all x ∈ X:

‖Ax‖Y ≤M‖x‖X

Similarly, A is bijective, continuous, and linear, so by the preceding corollary, A−1 is continu-
ous; hence, bounded. Therefore, there exists a constant m̃ > 0 such that for any y ∈ Y

‖A−1y‖X ≤ m̃‖y‖Y

Since A is a bijective, for each y ∈ Y , there is a corresponding x ∈ X such that Ax = y.
Hence,

‖x‖X ≤ m̃‖Ax‖Y
Equivalently, 1

m̃
‖x‖X ≤ ‖Ax‖Y . Choose m = 1/m̃, we have the desired result.

3.1.18 Remarks. 1. The choice of m, and M is independent of x ∈ X.

2. The norm on Y is equivalent to the norm on X.
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3.2 Internal vs Interior

3.2.19 Definition. Let V be a vector space, and S ⊂ V . A point x ∈ S is called an internal
point if for each y ∈ V , there is ε > 0 s.t. x+ (−ε, ε)y ⊂ S.

3.2.20 Remark. A set S ⊂ V for which 0 is an internal point is absorbing because for all y ∈ V ,
there is n ∈ N s.t. y

n
∈ S, i.e. V =

⋃∞
n=1(nS).

In general, an internal point is not an interior point. For example, let S = {(x, y) ⊂ R2 : y ≥
x2} ∪ {(x, y) ⊂ R2 : y ≤ −x2} ∪ {(x, 0) ⊂ R2 : x ∈ R}. Then the origin is an internal point,
but not an interior point of S

3.3 Closed Graph Theorem

3.3.21 Definition. Given sets X, Y , and a function f : X → Y , then Γ(f) = {(x, f(x)}x∈X ⊂
X × Y is called the graph of f

3.3.22 Theorem. Closed Graph Theorem If X is a topological space, Y is a Hausdorff space,
and f : X → Y is continuous, then Γ(f) is closed in the product topology.

Proof. Let Ω = X × Y \ Γ(f), and take (x0, y0) ∈ Ω. Then y0 6= f(x0)
Since Y is Hausdorff, there exist open sets V containing y0, and W containing f(x0) such

that V ∩W = ∅
=⇒ V ×W is open in Y × Y (w.r.t product topology)
Since f is continuous, f−1(W ) is open in X, hence f−1(W ) × V is open in X × Y . Moreover,
for any (x, y) ∈ f−1(W ) × V , we have f(x) ∈ W , and y ∈ V , but V and W are disjoint, so
f(x) 6= y. This implies f−1(V )×W ∩ Γ(f) = ∅. Hence, f−1(W )×W ⊂ Ω is an open set, and
contains (x0, y0). We conclude that Ω is open, i.e. Γ(f) is closed.

Under some circumstances, the converse is also true

3.3.23 Theorem. Let A : X → Y be a linear map between F-spaces. Then,
A is continuous ⇐⇒ Γ(A) is closed in X × Y

Proof. First, observe that the metrices dX and dY are invariant on X, Y resp, and so is d, where
d is the metric on X × Y , defined by:

dX×Y ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

Both X and Y are complete, so X × Y is complete. Hence, X × Y is an F-space. Next, we’ll
show Γ(A) is a subspace of X × Y . For any (x1, A(x1)) and (x2, A(x2)) ∈ Γ(A), c1, c2 ∈ R, by
linearity of A, we have :

c1(x1, A(x1)) + c2(x2, A(x2)) = (c1x1 + c2x2, c1A(x1) + c2A(x2)) (1)

= (c1x1 + c2x2, A(c1x1 + c2x2)) (2)

Therefore, Γ(A) is a subspace of X × Y . For the forward direction, assume A is continuous.
Then, Γ(A) is closed in X × Y (by Closed graph theorem). X × Y is complete, so Γ(A) is
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complete. Hence, Γ(A) is an F-space. Conversely, assume Γ(A) is closed. Then, Γ(A) is an
F-space (by the same argument above). Define the projection maps:

π1 : Γ(A)→ X

(x,Ax) 7→ x

and
π2 : X × Y → Y

(x, y) 7→ y

Projection maps π1 is continuous (with X × Y endowed with product topology), 1-1, and
onto. By open mapping theorem, π1 has a bounded inverse π−11 . Hence, π−11 is continuous.
Therefore, the composition π2 ◦ π−11 = A is continuous

4 CONVEXITY

In this section, we’ll study spaces through their duals

4.0.1 Theorem. Hahn-Banach) Let V be a real vector space, and p be a function on V satisfying:

1. (sublinearity) p(x+ y) 6= p(x) + p(y), for all x, y ∈ V

2. (homogeneity) p(αx) = αp(x), for α > 0

Let Y ⊂ V be a linear subspace, f be a linear functional f : Y → R s.t f ≤ p|Y Then, there
is a linear functional F on V with F |Y = f , and F ≤ p

4.0.2 Remarks. 1. In the above theorem, p doesn’t have to be a seminorm. For example, we
can take p(x) = max(0, x), x ∈ R, then p satisfies sublinearity and homogeneity while p is
not a seminorm.

2. No Banach space is needed
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