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3 Completeness

3.1 Open Mapping Theorem

3.1.14 Theorem. Open Mapping Theorem
Let X be an F-space, Y be a topological vector space. Let A : X — Y be a continuous, linear
map, and A(X) is of 2nd-category of Y. Then, A(X) =Y, A is open, and Y is an F-space.

Proof. (cont'd)

Last time we showed that A is an open map, and A(X) =Y. We still need to show Y is an
F-space. Notice that if A is one-to-one, then A is a homeomorphism. This is because A(X) =Y
implies A is a bijective, and A being a continuous, open map implies that its inverse A™1 is
continuous.

However, in general, A is not always one-to-one. To get around this, we will construct a 1-1
function between Y and an F-space we already know.

First, define a quotient map ¢ : X — X/N,where N = A~1({0}). Note that q is linear, and
onto, and the kernel N is a closed subsace of X.

Define A: X/N — Y, A(z + N) = Az. Then A is a bijection, and A= Aogq

X 4,y

|

X/N

To show that A is open, take a set E open (w.r.t final topology) in X/N. By continuity of
quotient map ¢, ¢~ *(E) is open.
= A(q '(E)) is open because A is open (as shown earlier)
— Ais open, continuous and 1-1
— A is homeomorphism



What's left to show is X/N is an F-space.

For translation-invariance of X /N, let d be the translation-invariant metric on X, and define
a mtric p on X/N by:

pla(z),q(y)) = infld(z —y,z) : z € N}
Then p is the invariant metric on the quotient space X/N.

For completeness of X/N, let {u,}, be a Cauchy sequence in X/N (with respect to the
metric p), then there exists a subsequence {u,,}; such that p(u,,, u,,,,) < 27". Since ¢ is an
onto map, we can select z; such that q(z;) = u,,, and d(z;,z;11) < 27". Then, z; is a Cauchy
sequence, hence, by the completeness of metric d, z; converges to some element x € X. Since ¢
is continuous, u,, = q(x;) converges to q(z) € X/N. The Cauchy sequence u,, has a convergent
subsequence u,,,, so u, also coverges. Hence, X/N is complete in the metric p. O

3.1.15 Corollary. Each bijective, continuous, linear map between F-spaces is a homeomorphim

Proof. Let X,Y be F-spaces, and f: X — Y be a bijective, continuous, linear map. Since f is
CTS and linear, by Open Mapping Theorem, f is an open map. Hence, f~! is continuous. We
conclude that f is a homeomorphism. ]

3.1.16 Remark. In the corollary above, the inverse f~! is also bounded.

3.1.17 Corollary. Let X, Y be Banach spaces, and A : X — Y be a continuous, linear bijection.
Then, there exists constants M, m > 0 such that for all xt € X:

mllzllx <[[Az|y < Mjz||x

Proof. First, A is continuous and linear, so the map A is bounded. Therefore, by definition of
boundedness of an operator norm, there exists a constant M > 0 such that for all z € X:

[Azly < Mljz||x

Similarly, A is bijective, continuous, and linear, so by the preceding corollary, A~! is continu-
ous; hence, bounded. Therefore, there exists a constant m > 0 such that for any y € Y

1A yllx < mllylly

Since A is a bijective, for each y € Y, there is a corresponding x € X such that Az = y.
Hence,
lz]lx < ml|Axfly

Equivalently, - ||z||x < ||Az||y. Choose m = 1/m, we have the desired result. O
3.1.18 Remarks. 1. The choice of m, and M is independent of z € X.

2. The norm on Y is equivalent to the norm on X.



3.2 Internal vs Interior

3.2.19 Definition. Let V be a vector space, and S C V. A point z € S is called an internal
point if for each y € V, thereis € > 0 s.t. x 4 (—€,€)y C S.

3.2.20 Remark. A set S C V for which 0 is an internal point is absorbing because for all y € V/,
thereisn € Nst. £ S, ie V =J,_,(nS).

In general, an internal point is not an interior point. For example, let S = {(z,y) C R? : y >
2?2} U{(x,y) CR? :y < —2?} U {(z,0) C R*: x € R}. Then the origin is an internal point,
but not an interior point of S

3.3 Closed Graph Theorem

3.3.21 Definition. Given sets X, Y, and a function f : X — Y, then I'(f) = {(z, f(2) }zex C
X x Y is called the graph of f

3.3.22 Theorem. Closed Graph Theorem If X is a topological space, Y is a Hausdorff space,
and f: X — Y is continuous, then I'(f) is closed in the product topology.

Proof. Let Q = X x Y \ T'(f), and take (zo,%0) € Q. Then yo # f(x0)

Since Y is Hausdorff, there exist open sets V' containing 1o, and W containing f(xo) such
that VNW =0
— V xWisopeninY xY (w.r.t product topology)
Since f is continuous, f~'(TV) is open in X, hence f~'(IW) x V is open in X x Y. Moreover,
for any (z,y) € f~Y(W) x V, we have f(z) € W, and y € V, but V and W are disjoint, so
f(x) #y. This implies f~1(V) x WNT(f) = 0. Hence, f~1(W) x W C Q is an open set, and
contains (o, yo). We conclude that 2 is open, i.e. I'(f) is closed.

O

Under some circumstances, the converse is also true

3.3.23 Theorem. Let A: X — Y be a linear map between F-spaces. Then,
A is continuous <= T'(A) is closed in X x Y

Proof. First, observe that the metrices dx and dy are invariant on X, Y resp, and so is d, where
d is the metric on X x Y, defined by:

dXxY((xh yl)u ($2, 92)) = dx(l'hxz) + dY(yla y2)

Both X and Y are complete, so X x Y is complete. Hence, X x Y is an F-space. Next, we'll
show I'(A) is a subspace of X x Y. For any (z1, A(x1)) and (22, A(z2)) € I'(A), ¢1,c2 € R, by
linearity of A, we have :

c1(21, A(21)) + e2(2, A(22)) = (121 + 22, 1 A(21) + 2 A(22)) (1)
= (111 + cax9, A(crz1 + c2x2)) (2)

Therefore, I'(A) is a subspace of X x Y. For the forward direction, assume A is continuous.
Then, I'(A) is closed in X x Y (by Closed graph theorem). X x Y is complete, so I'(A) is
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complete. Hence, I'(A) is an F-space. Conversely, assume I'(A) is closed. Then, I'(A) is an
F-space (by the same argument above). Define the projection maps:

7T1:F(A)—>X

(r,Az) — x

and
m: X XY =Y

(z,y) =y

Projection maps 7 is continuous (with X X Y endowed with product topology), 1-1, and

onto. By open mapping theorem, 7, has a bounded inverse ;. Hence, 7' is continuous.

Therefore, the composition m, o m; ' = A is continuous ]

4 CONVEXITY

In this section, we'll study spaces through their duals

4.0.1 Theorem. Hahn-Banach) Let V' be a real vector space, and p be a function on 'V satisfying:
1. (sublinearity) p(x + y) # p(x) + p(y), for all z,y € V
2. (homogeneity) p(ax) = ap(z), for o > 0

Let Y C V be a linear subspace, [ be a linear functional f : Y — R s.t f < p|ly Then, there
is a linear functional F' on V with F|y = f, and F < p

4.0.2 Remarks. 1. In the above theorem, p doesn't have to be a seminorm. For example, we
can take p(x) = maz(0,z),x € R, then p satisfies sublinearity and homogeneity while p is
not a seminorm.

2. No Banach space is needed



