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Warm-up: Internal vs. convexity
We revisit the sequence space from last time. Let,

C0+ := {x ∈ C00 with last (if existing) non-zero entry strictly positive}.

1.3.20 Question. Does C0+ have an internal point?

1.3.21 Answer. No. We show that no point x ∈ C0+ is internal. Assume that xn > 0 is the
last non-zero entry of an arbitrary point x ∈ C0+. Then, pick y ∈ C0+ with last non-zero entry
yn+1 > 0. We observe that for any ε > 0, the point x− εy is not in C0+. So x is not internal.

1.3.22 Question. Is C0+ convex?

1.3.23 Answer. Yes. Let x, y ∈ C0+ be chosen arbitrarily. Let z = εx + (1− ε)y ∈ C0+ be any
point on the line segment joining x and y, with ε ∈ (0, 1). Call m,n ∈ N the indices of the last
non-zero entries of x and y respectively, and N := max(m,n). Then, zN = εxN +(1− ε)yN > 0
is the last non-zero entry of z, which make it a point of C0+.

1.3.24 Remark. A line segment in R2 is another example of a convex set that has no internal
point.

1.3.25 Theorem (Hahn-Banach over R). Let V be a real vector space and p a functional on V
satisfying the following:

1. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ V , (subadditivity)

2. p(αx) = αp(x) for all x ∈ V and α ≥ 0. (positive homogeneity)

Let Y ⊆ V be a linear subspace and f : Y → R, a linear functional dominated by p, i.e. such
that f ≤ p∣∣Y . Then, there is a linear functional F on V which extends f , F∣∣Y = f , and preserves

the inequality: F ≤ p.

Proof. We start by an application of Zorn’s lemma. Consider the collection of linear extensions
of f dominated by p, Γ := {(g, Vg)}, with each Vg being a linear subspace of V containing Y ,
and each g : Vg → R a linear functional satisfying g∣∣Y = f and g ≤ p∣∣Vg

. We define a partial

order on Γ as follows: (g1, Vg1) � (g2, Vg2) if and only if,

• Vg1 ⊆ Vg2 , AND
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• g2∣∣Vg1

= g1.

Recall that linearly ordered subsets of Γ are called chains. Let {(g, Vg)}g∈G be a chain and set
D :=

⋃
g∈G Vg. Then, the function F defined on D by F (x) := g(x) if x ∈ Vg for some g ∈ G,

is well-defined, linear, and satisfies F ≤ p∣∣D. Thus, F ∈ Γ is an upper bound for the chain. By

Zorn’s lemma, there exists a maximal element (F , VF) of Γ.
We now set to show that VF = V , which will complete the proof. Assume for contradiction

that VF ( V . Then we may choose x0 ∈ V \ VF and set V1 := span{VF , x0}. Each vector
x ∈ V1 can then be uniquely decomposed as x = y + αx0 with (y, α) ∈ VF × R. Next, define
a linear functional f1 : V1 → R as follows: f1(y) := F(y) if y ∈ VF and f1(x0) := β, for an
arbitrary β ∈ R. By construction we have that for all x = y + αx0 ∈ V1, f1(x) = F(y) + αβ.
We will now choose β (which was arbitrary up until now) in such a way that the inequality,

f1 ≤ p∣∣V1
, (1)

becomes true. Note that if we succeed, then the mere existence of (f1, V1) will violate the
maximality of (F , VF), which will generate our contradiction. Inequality (1) is equivalent to,
f1(y) + αβ ≤ p(y + αx0), holding true for any (y, α) ∈ VF ×R. In particular, for y, y′ ∈ VF and
α = ±1, the following equations must hold:

f1(y) + β ≤ p(y + x0), (2)

f1(y
′)− β ≤ p(y′ − x0). (3)

We combine them to get the equivalent systems:

−β + f1(y
′)− p(y′ − x0) ≤ 0 ≤ p(y + x0)− f1(y)− β

⇐⇒ f1(y
′)− p(y′ − x0) ≤ β ≤ p(y + x0)− f1(y). (4)

Now, we explain why the inequality, f1(y
′) − p(y′ − x0) ≤ p(y + x0) − f1(y), is true for all

y, y′ ∈ VF , and we derive a direct consequence of it.

f1(y
′) + f1(y)=f1(y + y′)

=f1(y + x0 + y′ − x0)
=F(y + x0 + y′ − x0) (by construction y + y′ ∈ VF)

≤ p(y + x0 + y′ − x0)
≤ p(y + x0) + p(y′ − x0) (by subadditivity of p on V )

=⇒ f1(y
′)− p(y′ − x0) ≤ p(y + x0)− f1(y)

=⇒ sup
y′∈VF

(f1(y
′)− p(y′ − x0)) ≤ inf

y∈VF
(p(y + x0)− f1(y)) .

We see that, as long as both sides of the last inequality are not both equal to +∞ or −∞, there
exists a β ∈ R satisfying our inequality (4). But this potential obstacle cannot happen since,

−∞ < sup
y′∈VF

(f1(y
′)− p(y′ − x0)) ≤ inf

y∈VF
(p(y + x0)− f1(y)) <∞,

as none of the sets of which we are taking the sup or inf are empty. With β such chosen, we are
now able to prove that (1) is true for any α ∈ R. We proceed by cases.
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If α > 0,

f1(y + αx0) = αf1

( y
α

+ x0

)
≤ αp

( y
α

+ x0

)
= p(y + αx0). (where we used (2))

If α = 0, f1(y) = F(y) ≤ p(y).

If α < 0,

f1(y+αx0) = |α|f1
(
y

|α|
− x0

)
≤ |α|p

(
y

|α|
− x0

)
= p(y+αx0). (where we used (3))

When V is a C-vector space, the real part of a linear functional f : V → C determines its
imaginary part, by linearity: f(x) = Ref(x)− iRef(ix), for all x ∈ V . We can therefore apply
a similar strategy as above, to prove the following theorem.

1.3.26 Theorem (Hahn-Banach over C). Let X be a complex vector space and p a seminorm
on X. Let further, Y ⊆ X be a linear subspace and f : Y → C, a linear functional satisfying
|f | ≤ p∣∣Y . Then, there is a linear functional F : X → C which extends f , F∣∣Y = f , and

preserves the inequality: |F | ≤ p.

Proof. First, we see X as a real vector space, on which the linear functional Ref(x) : Y → R
may be extended to g : X → R by virtue of theorem 1.3.25, with g ≤ p. Next, we define
F (x) := g(x)− ig(ix) on X, which by construction, is complex-linear, and agrees with f on Y .
It only remains to show that |F | ≤ p. Let x ∈ X be arbitrary. Since F (x) lies in the complex
plane, there is a complex number α with norm 1 such that αF (x) = |F (x)|. Geometrically,
we can think of this α as a rotation map centered at the origin and taking the point F (x) to
the positive-half of the real line. Since F is linear, we also have αF (x) = F (αx), and since
F (αx) ∈ R by construction, we must have F (αx) = ReF (αx) = g(αx). Since g is dominated
by p and p is a seminorm, we get |F (x)| = g(αx) ≤ p(αx) = p(x), which completes the
proof.

1.3.27 Remark. The preceding theorem applies to normed spaces and shows the existence of an
abundance of linear functionals.

1.3.28 Corollary. If X is a normed space and x0 ∈ X, then there exists a linear functional f
such that f(x0) = ||x0|| and |f(x)| ≤ ||x|| for all x ∈ X.

Proof. If x0 = 0, let f ≡ 0. Otherwise, set p(x) := ||x|| for all x ∈ X, Y := span{x0}, define
the linear functional f(αx0) := α||x0||, and extend it to X using the preceding theorems1.

Next, we discuss separation.

1.3.29 Definition. Let V be a vector space and M,N ⊆ V two subsets. A linear functional f
on V is said to separate M and N if,

sup Re [f(N)] ≤ inf Re [f(M)] ,

where f(N) and f(M) denote the respective images of N and M under f .

1Note that an easy consequence of theorem 1.3.25 is that −p(−x) ≤ −F(−x) = F(x), for all x ∈ V , which
entails |F| ≤ p when p is a seminorm or a norm.
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