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Lecture Notes from November 08, 2016

taken by Adrian Radillo

Warm-up: Internal vs. convexity
We revisit the sequence space from last time. Let,

Cot := {x € Cy with last (if existing) non-zero entry strictly positive}.

1.3.20 Question. Does Cy; have an internal point?

1.3.21 Answer. No. We show that no point x € Cy, is internal. Assume that x,, > 0 is the
last non-zero entry of an arbitrary point z € Cy,. Then, pick y € Cy, with last non-zero entry
Ynt1 > 0. We observe that for any € > 0, the point = — ey is not in Cy,.. So x is not internal.

1.3.22 Question. Is Cy convex?

1.3.23 Answer. Yes. Let x,y € Cyy be chosen arbitrarily. Let z = ex + (1 — €)y € Cy,. be any
point on the line segment joining x and y, with € € (0,1). Call m,n € N the indices of the last
non-zero entries of = and y respectively, and N := max(m,n). Then, zy = ezny+ (1 —€)yy > 0
is the last non-zero entry of z, which make it a point of Cy, .

1.3.24 Remark. A line segment in R? is another example of a convex set that has no internal
point.

1.3.25 Theorem (Hahn-Banach over R). Let V' be a real vector space and p a functional on V/
satisfying the following:

1. p(x+y) < p(x)+ply) forall z,y € V, (subadditivity)
2. plaz) = ap(z) for all z € V and o > 0. (positive homogeneity)

Let Y C V be a linear subspace and f : Y — R, a linear functional dominated by p, i.e. such
that f < p‘y' Then, there is a linear functional F on V' which extends f, F |Y = f, and preserves

the inequality: F < p.
Proof. We start by an application of Zorn's lemma. Consider the collection of linear extensions

of f dominated by p, I :== {(g,V})}, with each V; being a linear subspace of V' containing Y,
and each g : V;, — R a linear functional satisfying g|Y = fand g < p}v. We define a partial

order on I as follows: (g1, V,,) < (92, V,,) if and only if,
o V:th C ‘/:172' AND
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Recall that linearly ordered subsets of I" are called chains. Let {(g,V;)} . be a chain and set
D :=,cq Vs Then, the function F' defined on D by F(z) := g(z) if z € V,, for some g € G,
is well-defined, linear, and satisfies F' < p’D. Thus, F' € T is an upper bound for the chain. By

Zorn's lemma, there exists a maximal element (F, V) of I.

We now set to show that Vx =V, which will complete the proof. Assume for contradiction
that Vx C V. Then we may choose zy € V \ Vr and set V; := span{Vr,zo}. Each vector
x € Vi can then be uniquely decomposed as x = y + axg with (y,a) € VF x R. Next, define
a linear functional f; : Vi — R as follows: fi(y) := F(y) if y € Vr and fi(xg) := 3, for an
arbitrary 8 € R. By construction we have that for all x = y + axy € Vi, fi(z) = F(y) + af.
We will now choose 5 (which was arbitrary up until now) in such a way that the inequality,

fi §P|VI7 (1)

becomes true. Note that if we succeed, then the mere existence of (fi,V;) will violate the
maximality of (F,Vz), which will generate our contradiction. Inequality (1) is equivalent to,
fiy) + af < p(y + axg), holding true for any (y, o) € Vi xR. In particular, for y,y € Vx and
a = +1, the following equations must hold:

fily) + B8 < p(y + xo), (2)
fy) — B < ply — o). (3)

We combine them to get the equivalent systems:

B+ W) =@y —x0) < 0 < ply+x0) — frly) — B
= L) —pl —x) < B < ply+x0) — fi(y). (4)

Now, we explain why the inequality, fi(v') — p(y — xo) < p(y + zo) — fi(y), is true for all
Y,y € Vr, and we derive a direct consequence of it.
AW+ hy)=fAly+Y)
=f1(y + zo +y — x0)
Fly+xo+y — x0) (by construction y + ¢ € Vx)
(y + 20 +y — )
(
(
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y+x0) +p(y — x0) (by subadditivity of p on V)
y+ o) — f1(y)

= sup (1) = ply' —20)) < mf (p(y +20) = /()

Py
p
p
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— HiY) —ply — o)
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We see that, as long as both sides of the last inequality are not both equal to +00 or —oo, there
exists a € R satisfying our inequality (4). But this potential obstacle cannot happen since,

—oo < sup (fi(y) —ply —wo)) < inf (p(y + o) = fi(y)) < o0
y'eVr yeVr

as none of the sets of which we are taking the sup or inf are empty. With 3 such chosen, we are
now able to prove that (1) is true for any a € R. We proceed by cases.
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If o« > 0,

fily + axg) = afi (% + x0> < ap (% + x()) = p(y + axy). (where we used (2))

Ifa=0 fi(y) =F(y) < py).

If o« <0,

fily+azxo) = |a|fi (% - m()) < |alp (% - xo) = p(y+axg). (where we used (3))

]

When V' is a C-vector space, the real part of a linear functional f : V' — C determines its
imaginary part, by linearity: f(z) = Ref(xz) —iRef(iz), for all z € V. We can therefore apply
a similar strategy as above, to prove the following theorem.

1.3.26 Theorem (Hahn-Banach over C). Let X be a complex vector space and p a seminorm
on X. Let further, Y C X be a linear subspace and f : Y — C, a linear functional satisfying
Ifl < p‘y. Then, there is a linear functional F' : X — C which extends f, F|Y = f, and

preserves the inequality: |F| < p.

Proof. First, we see X as a real vector space, on which the linear functional Ref(z) : Y — R
may be extended to g : X — R by virtue of theorem 1.3.25, with ¢ < p. Next, we define
F(z) := g(x) —ig(iz) on X, which by construction, is complex-linear, and agrees with f on Y.
It only remains to show that |F| < p. Let x € X be arbitrary. Since F(x) lies in the complex
plane, there is a complex number a with norm 1 such that aF'(x) = |F(z)|. Geometrically,
we can think of this a as a rotation map centered at the origin and taking the point F'(x) to
the positive-half of the real line. Since F'is linear, we also have aF'(x) = F(ax), and since
F(az) € R by construction, we must have F'(ax) = ReF(ax) = g(ax). Since g is dominated
by p and p is a seminorm, we get |F(x)| = g(az) < p(ax) = p(x), which completes the
proof. O

1.3.27 Remark. The preceding theorem applies to normed spaces and shows the existence of an
abundance of linear functionals.

1.3.28 Corollary. If X is a normed space and xo € X, then there exists a linear functional f
such that f(xzo) = ||xo|| and |f(x)| < ||z|| for all x € X.

Proof. If xy =0, let f = 0. Otherwise, set p(x) := ||z|| for all z € X, Y := span{z,}, define

the linear functional f(axg) := al|zo||, and extend it to X using the preceding theorems!.  [J

Next, we discuss separation.

1.3.29 Definition. Let VV be a vector space and M, N C V two subsets. A linear functional f
on V is said to separate M and N if,

supRe [f(V)] < inf Re [f(M)]
where f(N) and f(M) denote the respective images of N and M under f.

!Note that an easy consequence of theorem 1.3.25 is that —p(—z) < —F(—x) = F(x), for all x € V, which
entails |[F| < p when p is a seminorm or a norm.



