Last Time

- Hahn Banach
- Separation properties

From last time:

4.2.0 Theorem. Let V be a vector space and $K \subset V$ a convex subset whose points are all internal. Let D be an affine subspace such that $D \cap K = \emptyset$, then there is a linear functional f such that $f(D) = c$ with $c \in \mathbb{R}$ and $f(K) \subset (c, \infty)$.

Proof. Without loss of generality assume D is a subspace, we want to show

$$f(D) = 0, \quad f(K) \subset (0, \infty)$$

By Masur’s Separation theorem, there is a linear functional F and $\beta \in \mathbb{R}$ such that

$$\sup_{x \in K} ReF(x) \leq \beta \leq \inf_{x \in D} ReF(x).$$

Let $f(x) = ReF(x)$, so if V is complex, then

$$F(x) = f(x) - if(ix).$$

By $0 \in D$, $\beta \leq f(0) = F(0)$.
Either $D = \{0\}$, and we can choose $\beta = 0$.
Next, assume there is $x \in D$ with $f(x) \neq 0$, then either $f(x) < 0$ or $f(-x) < 0$, and then

$$\inf_{\alpha \in \mathbb{R}} f(\alpha x) = -\infty,$$

contradicting $\beta \in \mathbb{R}$.
This means, we can always choose $\beta = 0$. Hence,

$$f|_D = F|_D = 0,$$

so $D \subset kerF$.
We wish to show $kerF$ and K are disjoint.
Let \(x_0 \in ker F \cap K \), \(y \in V \) with \(f(y) > 0 \). Since \(x_0 (\in K) \) is internal, there is \(\epsilon > 0 \) such that \(x_0 + \epsilon y \in K \), and then by \(x_0 \in ker F \),

\[
f(x_0 + \epsilon y) = f(x_0) + \epsilon f(y) > 0.
\]

Thus, \(\sup_{x \in K} f(x) > 0 \). Contradiction.

Hence, \(ker F \) and \(K \) are disjoint.

So, we have that \(0 \notin f(K) \), i.e. \(f(K) \subset (0, \infty) \).

And \(D \) is an affine subspace which is the subset of the form

\[
x + W = \{ x + w : w \in W \}
\]

for some \(x \in V \), and \(W \) is a linear subspace of \(V \).

For subspace \(W \), we can get that

\[
f(W) = 0, \quad f(K - x) \subset (0, \infty)
\]

Let \(f(x) = c \), then we have

\[
f(D) = c, \quad f(K) \subset (c, \infty)
\]

the proof is complete.

Next, we would like to strengthen the separation to a strict inequality.

4.2.1 Theorem. Let \(V \) be a locally convex TVS and \(A, B \) disjoint non-empty convex sets. And \(A \) is compact, \(B \) is closed, then there is a continuous linear functional \(f \) such that

\[
\sup Ref(A) < \inf Ref(B).
\]

Proof. Using the improved separation property of a TVS, we know there is \(U \in \mathcal{U} \) open, convex and balanced such that

\[
(A + U) \cap (B + U) = \infty,
\]

which \(A + U \) is open and convex.

By the corollary to Masur on locally convex TVS, there is a continuous non-zero linear functional \(f \) such that

\[
\sup Ref(A + U) \leq \inf Ref(B + U).
\]

Pick \(x \in U \) such that \(f(x) = \epsilon > 0 \), then

\[
\sup Ref(A + x) \leq \sup Ref(A + U) \leq \inf Ref(B + U) \leq \inf Ref(B - x)
\]

By the linearity of \(f \),

\[
\sup Ref(A) + \epsilon \leq \inf Ref(B) - \epsilon
\]

hence,

\[
\sup Ref(A) < \inf Ref(B).
\]
4.3 The Weak Topology of X

4.3.2 Question. Assume we forgot the topology of X and only know X^*. What do we know about the topology of X?
We could use X^* to define initial topology on X.
Does this change the set of linear continuous functionals?

4.3.3 Remark. Let X be a real or complex vector space, and F a collection of linear functionals $X \to Y$.
The sets of the form
\[\{ y \in X : |f(y) - f(x)| < \epsilon \} \]
where $x \in X$, $\epsilon > 0$ and $f \in F$ vary, is a subbase for a topology on X, namely the topology where a subset of X is open if and only if it is the union of sets which are the intersection of a finite collection of such sets.
This is called the F-topology of X.

4.3.4 Lemma. The F-topology is Hausdorff if and only if F separates the points of X.

Proof. Let $x_0, y_0 \in X$, $x_0 \neq y_0$. If the F-topology is Hausdorff there are open set U, V such that $x_0 \in U$, $y_0 \in V$ and $U \cap V = \emptyset$.
We may assume that U and V are intersections of finite collections of sets of the form
\[\{ y \in X : |f(y) - f(x)| < \epsilon \} \]
It follows that there is a set of that form which contains x_0 but not y_0. I.e.
\[x_0 \in \{ y \in X : |f(y) - f(x)| < \epsilon \} \]
while $|f(y_0) - f(x)| \geq \epsilon$ for some $x \in X$, $f \in F$ and some $\epsilon > 0$.
Then $f(x_0) \neq f(y_0)$, and we conclude that F separates the points of X.
Conversely, assume that F separates the points of X.
Let $x_0, y_0 \in X$, $x_0 \neq y_0$.
There is then a functional $f \in F$ such that $f(x_0) \neq f(y_0)$.
Set $\epsilon = \frac{1}{2}|f(x_0) - f(y_0)| > 0$, and note that
\[x_0 \in \{ y \in X : |f(y) - f(x_0)| < \epsilon \} \]
\[y_0 \in \{ y \in X : |f(y) - f(y_0)| < \epsilon \} \]
Since
\[\{ y \in X : |f(y) - f(y_0)| < \epsilon \} \cap \{ y \in X : |f(y) - f(x_0)| < \epsilon \} = \emptyset \]
the proof is complete.

4.3.5 Lemma. Let f_1, f_2, \ldots, f_n be linear functionals on a vector space V. Let
\[N = \ker f_1 \cap \ker f_2 \cap \cdots \cap \ker f_n, \]
then the following three properties are equivalent for a linear functional f:

1. $f \in \text{Span}\{f_1, f_2, \ldots, f_n\}$
2. There is $C > 0$ such that for all $x \in V$,
 $$|f(x)| \leq C \max_k |f_k(x)|$$
3. $N \subset \ker f$.

Proof. Assume (1), i.e. there is $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that
 $$f(x) = \sum_{k=1}^{n} \alpha_k f_k(x)$$
then
 $$|f(x)| \leq \sum_{k=1}^{n} |\alpha_k||f_k(x)| \leq n(\max_{1 \leq k \leq n} |\alpha_k|) \max_{1 \leq k \leq n} |f_k(x)|$$
where $C = n(\max_{1 \leq k \leq n} |\alpha_k|)$.
Assume (2) holds, so
 $$|f(x)| \leq C \max_k |f_k(x)|$$
then f vanishes on N.
Assume (3) holds. Let $\mathbb{F} = \mathbb{R} or \mathbb{C}$ be the ground field for V.
Let $T : V \to \mathbb{F}^n$,
 $$T(x) = (f_1(x), f_2(x), \ldots, f_n(x))$$
If $x, y \in V$ give $T(x) = T(y)$, then $x - y \in N$ and $f(x - y) = 0$ by assumption, so $f(x) = f(y)$.
Let $\Lambda : T(V) \subset \mathbb{F}^n \to \mathbb{F}$,
 $$\Lambda((f_1(x), f_2(x), \ldots, f_n(x))) = f(x)$$
then Λ is linear and it extends linearly to all of \mathbb{F}^n.
Hence, there are $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F}$ with
 $$\Lambda(u_1, u_2, \ldots, u_n) = \sum_{j=1}^{n} \alpha_j u_j$$
Consequently,
 $$f(x) = \Lambda((f_1(x), f_2(x), \ldots, f_n(x))) = \sum_{j=1}^{n} \alpha_j f_j(x).$$

4.3.6 Theorem. Let V be a vector space, V' a separating vector space of linear functionals on V. Denote by τ' the initial topology induced by V' on V, then (V, τ') is a locally convex TVS and the space of all linear continuous functionals is V'.

Proof. Since $\mathbb{F} = \mathbb{R} or \mathbb{C}$ is Hausdorff, and V' separates points, (V, τ') is Hausdorff by the previous 4.3.4 Lemma. The topology τ' is translation invariant because open sets in (V, τ') are
generated by \(\{ f^{-1}(A) : f \in V', A \text{ open in } \mathbb{R} \} \) and \(f \) is linear.

Hence we have a local subbase

\[
V(f, r) = \{ x \in V : |f(x)| < r \}
\]

whose sets are convex and balanced. Moreover, since \(V' \) separates points,

\[
\bigcap_{r > 0, f \in V'} V(f, r) = \{ 0 \}
\]

so the singleton set is closed. (Next part of proof see the next lecture notes)