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Last Time

• Hahn Banach

• Separation properties

From last time:

4.2.0 Theorem. Let V be a vector space and K ⊂ V a convex subset whose points are all
internal. Let D be an affine subspace such that D ∩K = ∅, then there is a linear functional f
such that f(D) = c with c ∈ R and f(K) ⊂ (c,∞).

Proof. Without loss of generality assume D is a subspace, we want to show

f(D) = 0, f(K) ⊂ (0,∞)

By Masur’s Separation theorem, there is a linear functional F and β ∈ R such that

supReF (K) 6 β 6 inf ReF (D).

Let f(x) = ReF (x), so if V is complex, then

F (x) = f(x)− if(ix).

By 0 ∈ D, β 6 f(0) = F (0).
Either D = {0}, and we can choose β = 0.
Next, assume there is x ∈ D with f(x) 6= 0, then either f(x) < 0 or f(−x) < 0, and then

inf
α∈R

f(αx) = −∞,

contradicting β ∈ R.
This means, we can always choose β = 0. Hence,

f |D = F |D = 0,

so D ⊂ kerF .
We wish to show kerF and K are disjoint.
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Let x0 ∈ kerF ∩K, y ∈ V with f(y) > 0. Since x0 (∈ K) is internal, there is ε > 0 such that
x0 + εy ∈ K, and then by x0 ∈ kerF ,

f(x0 + εy) = f(x0) + εf(y) > 0.

Thus, supx∈K f(x) > 0. Contradiction.
Hence, kerF and K are disjoint.
So, we have that 0 /∈ f(K), i.e. f(K) ⊂ (0,∞).
And D is an affine subspace which is the subset of the form

x+W = {x+ w : w ∈ W}

for some x ∈ V , and W is a linear subspace of V .
For subspace W , we can get that

f(W ) = 0, f(K − x) ⊂ (0,∞)

Let f(x) = c, then we have
f(D) = c, f(K) ⊂ (c,∞)

the proof is complete.

Next, we would like to strengthen the separation to a strict inequality.

4.2.1 Theorem. Let V be a locally convex TVS and A, B disjoint non-empty convex sets. And
A is compact, B is closed, then there is a continuous linear functional f such that

supRef(A) < inf Ref(B).

Proof. Using the improved separation property of a TVS, we know there is U ∈ U open, convex
and balanced such that

(A+ U) ∩ (B + U) =∞,
which A+ U is open and convex.
By the corollary to Masur on locally convex TVS, there is a continuous non-zero linear functional
f such that

supRef(A+ U) 6 inf Ref(B + U).

Pick x ∈ U such that f(x) = ε > 0, then

supRef(A+ x) 6 supRef(A+ U)

6 inf Ref(B + U)

6 inf Ref(B − x)

By the linearity of f ,
supRef(A) + ε 6 inf Ref(B)− ε

hence,
supRef(A) < inf Ref(B).
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4.3 The Weak Topology of X

4.3.2 Question. Assume we forgot the topology of X and only know X∗. What do we know
about the topology of X?
We could use X∗ to define initial topology on X.
Does this change the set of linear continuous functionals?

4.3.3 Remark. Let X be a real or complex vector space, and F a collection of linear functionals
X → Y .
The sets of the form

{y ∈ X : |f(y)− f(x)| < ε}

where x ∈ X, ε > 0 and f ∈ F vary, is a subbase for a topology on X, namely the topology
where a subset of X is open if and only if it is the union of sets which are the intersection of a
finite collection of such sets.
This is called the F -topology of X.

4.3.4 Lemma. The F -topology is Hausdorff if and only if F separates the points of X.

Proof. Let x0, y0 ∈ X, x0 6= y0. If the F -topology is Hausdorff there are open set U , V such
that x0 ∈ U , y0 ∈ V and U ∩ V = ∅.
We may assume that U and V are intersections of finite collections of sets of the form

{y ∈ X : |f(y)− f(x)| < ε}

It follows that there is a set of that form which contains x0 but not y0. I.e.

x0 ∈ {y ∈ X : |f(y)− f(x)| < ε}

while |f(y0)− f(x)| ≥ ε for some x ∈ X, f ∈ F and some ε > 0.
Then f(x0) 6= f(y0), and we conclude that F separates the points of X.
Conversely, assume that F separates the points of X.
Let x0, y0 ∈ X, x0 6= y0.
There is then a functional f ∈ F such that f(x0) 6= f(y0).
Set ε = 1

2
|f(x0)− f(y0)| > 0, and note that

x0 ∈ {y ∈ X : |f(y)− f(x0)| < ε}

y0 ∈ {y ∈ X : |f(y)− f(y0)| < ε}

Since
{y ∈ X : |f(y)− f(y0)| < ε} ∩ {y ∈ X : |f(y)− f(x0)| < ε} = ∅

the proof is complete.

4.3.5 Lemma. Let f1, f2, . . . , fn be linear functionals on a vector space V . Let

N = kerf1 ∩ kerf2 ∩ · · · ∩ kerfn,
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then the following three properties are equivalent for a linear functional f :
(1) f ∈ Span{f1, f2, . . . , fn}
(2) There is C > 0 such that for all x ∈ V ,

|f(x)| 6 C max
k
|fk(x)|

(3) N ⊂ kerf .

Proof. Assume (1), i.e. there is α1, α2, . . . , αn such that

f(x) =
n∑
k=1

αkfk(x)

then

|f(x)| 6
n∑
k=1

|αk||fk(x)| 6 n( max
16k6n

|αk|) max
16k6n

|fk(x)|

where C = n(max16k6n |αk|).
Assume (2) holds, so

|f(x)| 6 C max
k
|fk(x)|

then f vanishes on N .
Assume (3) holds. Let F = RorC be the ground field for V .
Let T : V → Fn,

T (x) = (f1(x), f2(x), . . . , fn(x))

If x, y ∈ V give T (x) = T (y), then x−y ∈ N and f(x−y) = 0 by assumption, so f(x) = f(y).
Let Λ : T (V ) ⊂ Fn → F,

Λ((f1(x), f2(x), . . . , fn(x))) = f(x)

then Λ is linear and it extends linearly to all of Fn.
Hence, there are α1, α2, . . . , αn ∈ F with

Λ(u1, u2, . . . , un) =
n∑
j=1

αjuj

Consequently, f(x) = Λ((f1(x), f2(x), . . . , fn(x))) =
∑n

j=1 αjfj(x).

4.3.6 Theorem. Let V be a vector space, V ′ a separating vector space of linear functionals on
V . Denote by τ ′ the initial topology induced by V ′ on V , then (V, τ ′) is a locally convex TVS
and the space of all linear continuous functionals is V ′.

Proof. Since F = R or C is Hausdorff, and V ′ separates points, (V, τ ′) is Hausdorff by the
previous 4.3.4 Lemma. The topology τ ′ is translation invariant because open sets in (V, τ ′) are
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generated by {f−1(A) : f ∈ V ′, A open in F} and f is linear.
Hence we have a local subbase

V (f, r) = {x ∈ V : |f(x)| < r}

whose sets are convex and balanced. Moreover, since V ′ separates points,⋂
r>0,f∈V ′

V (f, r) = {0}

so the singleton set is closed. ( Next part of proof see the next lecture notes)
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