Functional Analysis, Math 7320
Lecture Notes from November 15, 2016
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Last Time
e Hahn Banach
e Separation properties
From last time:

4.2.0 Theorem. Let V' be a vector space and K C V a convex subset whose points are all
internal. Let D be an affine subspace such that D N K = (), then there is a linear functional f
such that f(D) = ¢ withc € R and f(K) C (¢, 00).

Proof. Without loss of generality assume D is a subspace, we want to show
f(D)=0,  f(K)C(0,00)
By Masur’s Separation theorem, there is a linear functional F' and 3 € R such that
sup ReF(K) < f < inf ReF(D).
Let f(z) = ReF(x), so if V is complex, then
Fz) = f(z) - if(ix).

By 0 D, B< f(0) = F(0).
Either D = {0}, and we can choose 5 = 0.
Next, assume there is x € D with f(z) # 0, then either f(z) < 0 or f(—x) <0, and then

inf f(ax) = —oo,

contradicting 3 € R.
This means, we can always choose 5 = 0. Hence,

f|D:F|D:Oa

so D C kerF.
We wish to show kerF and K are disjoint.



Let xg € kerFN K, y € V with f(y) > 0. Since zy (€ K) is internal, there is € > 0 such that
ro + ey € K, and then by zy € kerF,

f(xo +ey) = f(x0) +f(y) > 0.

Thus, sup,cx f(z) > 0. Contradiction.

Hence, kerF' and K are disjoint.

So, we have that 0 ¢ f(K), i.e. f(K) C (0,00).

And D is an affine subspace which is the subset of the form

r+W={z+w:weW}

for some x € V, and W is a linear subspace of V.
For subspace W, we can get that

Let f(z) = ¢, then we have

the proof is complete.

Next, we would like to strengthen the separation to a strict inequality.

4.2.1 Theorem. Let V be a locally convex TVS and A, B disjoint non-empty convex sets. And
A is compact, B is closed, then there is a continuous linear functional f such that

sup Ref(A) < inf Ref(B).

Proof. Using the improved separation property of a TVS, we know there is U € U open, convex
and balanced such that
(A+U)N(B+U) = oo,

which A + U is open and convex.
By the corollary to Masur on locally convex TVS, there is a continuous non-zero linear functional
f such that

sup Ref(A+U) < inf Ref(B +U).

Pick z € U such that f(z) =€ > 0, then
sup Ref(A+ x) < sup Ref(A+U)
<inf Ref(B +U)
< inf Ref(B — z)

By the linearity of f,
sup Ref(A) + e <inf Ref(B) — ¢

hence,
sup Ref(A) < inf Ref(B).



4.3 The Weak Topology of X

4.3.2 Question. Assume we forgot the topology of X and only know X*. What do we know
about the topology of X7

We could use X* to define initial topology on X.

Does this change the set of linear continuous functionals?

4.3.3 Remark. Let X be a real or complex vector space, and F' a collection of linear functionals
X =Y.
The sets of the form

lye X |f(y) — f(x)| < e}

where x € X, € > 0 and f € F vary, is a subbase for a topology on X, namely the topology
where a subset of X is open if and only if it is the union of sets which are the intersection of a
finite collection of such sets.

This is called the F-topology of X.

4.3.4 Lemma. The F-topology is Hausdorff if and only if F' separates the points of X .

Proof. Let xg, yo € X, x¢ # yo. If the F-topology is Hausdorff there are open set U, V such
thatzp € U, yo € Vand UNV = 0.
We may assume that U and V' are intersections of finite collections of sets of the form

lye X [f(y) — f(z)| < e}

It follows that there is a set of that form which contains xy but not 1. l.e.

ro€{ye X |f(y) — f(zx)| < e}

while | f(yo) — f(x)| > € for some x € X, f € F and some ¢ > 0.

Then f(x¢) # f(yo), and we conclude that F' separates the points of X.
Conversely, assume that F' separates the points of X.

Let zg, yo € X, xo # yo.

There is then a functional f € F such that f(zo) # f(yo).

Set € = 1[f(z0) — f(vo)| > 0, and note that

ro € {y € X 1 |f(y) — f(zo)| < €}

Yo €{y € X :|f(y) — f(wo)| < ¢}

Since

{ye X |fly) = flw)l <t n{y e X |f(y) — fwo)| < e} =0
the proof is complete. n
4.3.5 Lemma. Let fi, fo,..., f. be linear functionals on a vector space V. Let

N =kerfinkerfan---Nkerf,,



then the following three properties are equivalent for a linear functional f:

(1) f e Span{fi, fo,-.., fu}
(2) There is C' > 0 such that for all x € V,

|[f(@)] < Cmax|fi(z)]

(3) N Ckerf.
Proof. Assume (1), i.e. there is ay, ay, . ..,y such that
@) =S anfi(a)
k=1
then .
7@ < 3 el o) < nmax o)) max |fy(a)
k=1

where C' = n(maxj<g<n |al).-
Assume (2) holds, so
£()] < Cmax | (@)

then f vanishes on N.
Assume (3) holds. Let F = RorC be the ground field for V.
Let T: V —F~,

T(x) = (fu(2), fo(), ..., fulz))
If z,y € V give T'(z) = T'(y), then x —y € N and f(z —y) = 0 by assumption, so f(z) = f(y).
Let A: T(V)CF* T,

A((fi(z), fo(z), .., ful2))) = f(2)

then A is linear and it extends linearly to all of F".
Hence, there are aq, s, ..., a, € F with

n
A(ul,u2, ce 7Un) = Z ;U5
j=1

Consequently, f(z) = A((fi(2), fo(T), ..., ful2))) = D27, a; fi(z). -

4.3.6 Theorem. Let V be a vector space, V' a separating vector space of linear functionals on
V. Denote by 7' the initial topology induced by V' on V', then (V,7') is a locally convex TVS
and the space of all linear continuous functionals is V'.

Proof. Since F = R or C is Hausdorff, and V' separates points, (V,7') is Hausdorff by the
previous 4.3.4 Lemma. The topology 7’ is translation invariant because open sets in (V,7’) are



generated by {f7'(A): f € V', A open in F} and f is linear.
Hence we have a local subbase

V(f,r)={zeV:|flx)] <r}

whose sets are convex and balanced. Moreover, since V' separates points,

() Vfr) = {0}

r>0,feV’

so the singleton set is closed. ( Next part of proof see the next lecture notes)



