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Last time:

1. Weak topology

2. sequential compactness

3. boundedness

4. E ⊂ E
w

4.1.16 Theorem. If E is a convex subset of a topological vector space then E = E
w
.

Proof. One direction was proved last time. For the other direction we will use the following
version of Hahn-Banach: if A,B are convex and disjoint with A compact and B closed, then
there exists a linear functional f such that supa∈A<f(a) < infb∈B <f(b). Choose x0 /∈ E. Since
{x0} is compact, there exists f as above and β ∈ R such that <f(x0) < β < infx∈E <f(x).
Then {x : <f(x) < β} is a weak neighborhood of x0 disjoint from E. So x0 /∈ E

w
.

4.1.17 Corollary. If E is a convex subset of a metrizable topological vector subspace X and xn
is a sequence in E which converges weakly to x (hence x ∈ Ew

), then there exists a sequence
{yn} in E such that yn → x in the topology of X.

Proof. This follows immediately since x ∈ Ew
= E.

4.1.18 Corollary. If E is a convex subset of a locally convex topological vector space, then:

1. E is τ -closed if and only if E is weakly closed.

2. E is τ -dense if and only if E is weakly dense.

Proof. This is obvious from the theorem.
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5 The weak-* topology

We know X∗ is a vector space. If X is normed, we can make X∗ a Banach space by equipping it
with the operator norm. But if X is merely a topological vector space, what additional structure
can we give X∗? We can give X∗ the weak topology, which is the initial topology on X∗ induced
by X∗∗. But in many applications it is much more useful to weaken this topology.

Towards this end, observe that we can embed X into X∗∗ via the canonical map i : X → X∗∗

given by i(x)(f) ≡ Fx(f) = f(x) for all f ∈ X∗. We claim that the set {Fx}x∈X separates
points. For if f, g ∈ X∗ and Fx(f) = Fx(g) for all x ∈ X, then f(x) = g(x) for all x ∈ X which
means f = g. We call the initial topology on X∗ induced by {Fx}x∈X the weak-* topology on X∗.
A local subbasis for this topology is {V (x, r)}x∈X,r>0 where V (x, r) = {f ∈ X∗ : |f(x)| < r}.

Note that a net {fα} in X∗ converges weak-* to f ∈ X∗ if and only if fα(x)→ f(x) for all
x ∈ X.

5.0.1 Example. Recall that c∗0 = `1 and `∗1 = `∞. Then `1 has three topologies: the norm, weak,
and weak-* topologies. Suppose {xn} is a sequence in `1. Then xn → 0 in norm means that∑∞

j=1 |(xn)j| → 0 as n → ∞. Next, xn → 0 weakly means that 〈xn, y〉 =
∑∞

j=1(xn)jyj → ∞
as n → ∞ for all y ∈ `∞. Finally, xn → 0 weak-* means that 〈xn, y〉 → 0 for all y ∈ c0. Thus
`1 convergence implies weak convergence implies weak-* convergence.

5.0.2 Theorem (Alaoglu). If (X, τ) is a topological vector space, V ∈ O(0), then the closed
unit ball K of X∗ is weak-* compact.

Before we prove this, for each x ∈ X define a set Dx = {k ∈ K : |k| ≤ ‖x‖} = B‖x‖(0) ⊂ K.
Then define D =

∏
x∈X Dx and give D the product topology. D is then the set of all functions

ϕ : X → K such that |ϕ(x)| ≤ ‖x‖ for every x ∈ X. Note that for any f ∈ B∗ we have
|f(x)| ≤ ‖f‖X∗‖x‖ ≤ ‖x‖ so that B∗ ⊂ D. We need a lemma:

5.0.3 Lemma. The relative topology τ pB∗ that B∗ inherits from the product topology on D and
the relative topology τ ∗B∗ that B∗ inherits from the weak-* topology on X∗ coincide.

Proof. We prove this lemma by characterizing the convergence of nets in both topologies. First
suppose that {fα}α∈A is a net in B∗ which converges to f ∈ B∗ with respect to τ pB∗ . We
claim that fα(x) → f(x) for all x ∈ X. To see this, choose x0 ∈ X and ε > 0. The set
{k ∈ K : |f(x0) − k| < ε} is open in K and so Sx0 = {k ∈ K : |f(x0) − k| < ε} ∩Dx0 is open
in Dx0 . Therefore the set S =

∏
x∈X Sx, where Sx = Dx whenever x 6= x0, is open in D. So by

assumption there exists α0 ∈ A such that α ≥ α0 implies fα ∈ S. But this means in particular
that for α ≥ α0 we have fα(x0) ∈ Sx0 which yields |f(x0)− fα(x0)| < ε. Since ε was arbitrary
this proves that fα → f pointwise.

Conversely suppose that {fα}α∈A is a net in BX∗ which converges to f ∈ B∗ pointwise. We
claim that fα → f with respect to τ pB∗ . To see this, choose a basis element U for (B∗, τ pB∗)
containing f . Write U =

∏
x∈X Ux where Ux is open in Dx and all but finitely many of the sets

Ux are equal to Dx. Let {xi}ni=1 be the indices for which Uxi 6= Dxi . So Uxi is open in Dxi and
contains the point f(xi). Write Uxi = Dxi ∩ Vi where Vi is open in K. Notice that f(xi) ∈ Vi.
Then by assumption there exist indices {αi}ni=1 such that for each i we have α ≥ αi implies
fα(xi) ∈ Vi. Since fα(xi) ∈ Dxi also (since fα ∈ B∗) this means that fα ∈ Uxi for α ≥ αi.
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Now let α0 be an upper bound for α1, . . . , αn in A. Then if α ≥ α0 we have fα(xi) ∈ Uxi for
i = 1, . . . , n. Hence fα ∈ U for α ≥ α0 which shows that fα → f in τ pB∗ .

We have proved that a net converges to a point f in (B∗, τ pB∗) if and only if the net converges
to f pointwise. We now show that the same is true for nets in (B∗, τ ∗B∗).

So suppose that {fα}α∈A is a net in B∗ which converges to f ∈ B∗ with respect to (B∗, τ ∗B∗).
Choose x ∈ X and ε > 0. Since {ϕ ∈ X∗ : |x̂(ϕ)− x̂(f)| < ε} is the inverse image of the open
set Bε(x̂(f)) ⊂ K under the map x̂ ∈ X∗∗, it is weak-* open in X∗. Hence S = {ϕ ∈
X∗ : |x̂(ϕ) − x̂(f)| < ε} ∩ B∗ ∈ τ ∗B∗ and contains f . So by assumption there exists α0 ∈ A
such that α ≥ α0 implies fα ∈ S. But this says that |x̂(fα) − x̂(f)| < ε, or equivalently,
|fα(x)− f(x)| < ε, for α ≥ α0. Since x and ε were arbitrary this shows that fα → f pointwise.

Conversely, suppose that the net {fα}α∈A in B∗ converges to f ∈ B∗ pointwise. Then
fα(x) → f(x) for all x ∈ X, which is equivalent to saying x̂(fα) → x̂(f) for all x ∈ X. This
in turn means that fα → f in (X∗, τw∗). To show that fα → f in (B∗, τ ∗B∗) choose any set
U ∈ τ ∗B∗ containing f and write U = B∗ ∩ V where V ∈ τw∗ . Then there exists α0 ∈ A such
that α ≥ α0 implies fα ∈ V . But fα ∈ B∗ so that fα ∈ U for α ≥ α0. This proves that fα → f
in (B∗, τ ∗B∗).

We have proved that a net converges to a point f in (B∗, τ ∗B∗) if and only if the net converges
to f pointwise. We conclude that a net in B∗ converges to a point f ∈ B∗ with respect to τ pB∗

if and only if the net converges to f with respect to τ ∗B∗ . Since any topology is characterized by
the behavior of its convergent nets, this shows that τ pB∗ = τ ∗B∗ .

Proof of Alaoglu’s Theorem. V is absorbing so each x ∈ X has β(x) > 0 such that x ∈ β(x)V .
So for x ∈ X and f ∈ K we have |f(x)| = β(x) · |f( x

β(x)
)| ≤ β(x) since x

β(x)
∈ V . In the above

lemma replace Dx with Bβ(x)(0) and the same result follows.
To complete the proof we need only show that K is closed in D with the product topology.

So choose f0 in the product topology closure of K. Choose a typical neighborhood S of f0.
Write S = {f ∈ D : |f(x) − f0(x)| < ε, |f(y) − f0(y)| < ε, |f(αx + βy) − f0(αx + βy)| < ε}.
Then there exists f ∈ K with f ∈ S. But then

|f0(αx+ βy)− αf(x)− βf(y) + αf(x) + βf(y)− αf0(x)− βf0(y)| < (1 + |α|+ |β|)ε

which implies that f0 is linear.
To be continued...
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