
Lecture Notes from August 23, 2022
taken by Bernhard Bodmann

0 Course Information

Class: Tu&Th 10am-11:20pm, Melcher Hall 129

Instructor: Bernhard Bodmann, bgb math@ .uh . edu

Office: PGH 604; Tu 1:30-3pm, We 10:30-11:30am

Content: This course is part of a two semester sequence covering main advanced
results in functional analysis, including Hilbert spaces, Banach spaces,
and linear operators on theses spaces.
Functional analysis combines two fundamental branches of mathematics:
analysis and linear algebra. Limiting arguments from analysis become
essential in order to resolve questions from linear algebra in infinite-
dimensional spaces. In addition, there are close connections between
algebraic and topological properties in such spaces that deepen our un-
derstanding even in the finite dimensional case.
Topics covered in this first part of the course sequence include: A re-
view of fundamental concepts, including Hilbert spaces and operators
on Hilbert spaces, the adjoint operator, normal operators. Semigroups
with involution and their representation, decomposition of representa-
tions, spectral theory in Banach algebras, C∗ algebras, properties of the
spectrum, Gelfand’s representation theory, properties of commutative
C∗-algebras, functional calculus, positivity, states, spectral theory for
bounded normal operators.

Prerequisites: Apart from the official prerequisites, you should have seen the Hahn
Banach Theorem, the Uniform Boudnedness Theorem together with its
consequence for operator sequences, the Banach-Steinhaus Theorem,
and the Open Mapping Theorem, all in the context of normed spaces.
For details, see the course handout from August 23, 2022.

Text: Walter Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991.

Assignments: You will be asked take notes and typeset them in LaTeX.
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Final Grade: Based on the quality of notes. The goal of the notes is to absorb
the material presented in class and prepare the notes so that one of
your (hypothetical) peers who missed class will be able to follow your
explanations and learn what happened in class.

All of the course-related information is listed in the official syllabus, which can be found on
the website for our course:

www.math.uh.edu/∼bgb/Courses

1 Fundamental concepts

We begin with a review of fundamental concepts. Most of the material in this course is based on
complex Hilbert spaces. In many cases, a real version can be extracted from the complex result
without much effort.

1.1 Definition. Let H be a complex vector space.

(a) A map b : H×H→ C is called

(1) sesquilinear, if fixing the second entry y ∈ H gives a linear map x 7→ b(x, y), and
fixing the first entry x ∈ H gives a map y 7→ b(x, y) that is conjugate linear, so for
λ ∈ C, x, y, z ∈ H,

b(x, λy+ z) = λb(x, y) + b(x, z) .

Unless indicated otherwise, λ always denotes the complex conjugate of a complex
number λ.

(2) The map b is called Hermitian if b is sesquilinear and additionally b(y, x) = b(x, y)
for each x, y ∈ H;

(3) positive semidefinite if b is Hermitian and for each x ∈ H, b(x, x) ≥ 0;

(4) positive definite if b is positive semidefinite and b(x, x) = 0 implies x = 0. In this
case, b is called an inner product.

(b) If H is equipped with a positive definite sesquilinear form b, then we write

〈x, y〉 ≡ b(x, y)

and say that H is an inner product space.

(c) Two elements x, y ∈ H are called orthogonal if 〈x, y〉 = 0, written x ⊥ y or y ⊥ x. For a
subset E ⊂ H, we write

E⊥ = {y ∈ H : for all x ∈ E, we have 〈y, x〉 = 0} .

In the real case, we simply ignore the complex conjugate and apply these definitions verbatim,
as for any λ ∈ R, λ = λ.
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1.2 Exercise. Note that ⊥ is a symmetric relation on H. From which property in our definitions
does this symmetry originate?

We revisit two fundamental quantitative results for Hermitian sesquilinear forms.

1.3 Lemma. Let b be a Hermitian sesquilinear form on a complex vector space V .

(a) If b is positive semidefinite, then for x, y ∈ V , the Cauchy-Schwarz Inequality holds,

|b(x, y)|2 ≤ b(x, x)b(y, y) .

(b) For x, y ∈ V , the Polarization Identity

b(x, y) =
1

4
(b(x+ y, x+ y) − b(x− y, x− y) + ib(x+ iy, x+ iy) − ib(x− iy, x− iy))

is satisfied.

We note that the form of the polarization identity depends on the convention that the in-
ner product is conjugate in the second entry. The quantitative insights related to Hermitian
sesquilinear forms help characterize inner product spaces in terms of the associated norm.

1.4 Theorem (Jordan, v. Neumann). If H is a complex inner product space, then ‖x‖ ≡
(〈x, x〉)1/2 defines a norm on H which satisfies that for x, y ∈ H, the parallelogram law holds,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 .

Conversely, if H is a normed space for which the parallelogram law holds, then

b(x, y) =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2)

defines an inner product on H.

Proof. Assuming H is an inner product space, then by the Cauchy-Schwarz inequality,

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈y, x〉+ 〈x, y〉+ 〈y, y〉
= ‖x‖2 + 2Re[〈x, y〉] + ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 .

Now taking the square root on both sides gives the triangle inequality. The other properties of
the norm are left as an exercise.

Conversely, if a norm satisfies the parallelogram identity, then

‖x+ y‖2 − ‖x− y‖2 + ‖x+ iy‖2 + ‖x− iy‖2 = 4(‖x‖2 + 4‖y‖2),

so we can deduce that this quantity is zero if and only if x = y = 0.
We use this property together with other, relatively elementary steps to show that b is Her-

mitian and positive definite. The suggested steps are
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Step 1. Show for each x ∈ V , b(x, x) ≥ 0 and b(x, x) = 0 is equivalent to x = 0;

Step 2. for each x ∈ V , λ ∈ C, b(λx, λx) = |λ|2b(x, x);

Step 3. for each x, y ∈ V , b(x, y) = b(y, x),

Step 4. for each x, y, z ∈ V , b(x, y+ z) = 2b(x
2
, y) + 2b( z

2
, z);

Step 5. for each x, y ∈ V , q ∈ Q, b(qx, y) = qb(x, y);

Step 6. for each qx, y ∈ V , λ ∈ C, b(λx, y) = λb(x, y).

The norm induces a metric topology on any inner product space. If the inner product space is
complete with respect to this metric, so all Cauchy sequences converge, then we have the nicest
possible setting.

1.5 Definition. An inner product space H that is complete with respect to the topology induced
by the norm associated with the inner product is called a Hilbert space.
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