Lecture Notes from August 25, 2022

taken by Bernhard Bodmann

Last time

- From inner product spaces to Hilbert spaces,
- orthogonality, orthogonal complements,
- Chauchy-Schwarz inequality and parallelogram law,
- polarization identity
- Jordan-von-Neumann Theorem.

Warm up:

1.6 Question. If \mathcal{H} is a Hilbert space and y a fixed vector, why is the linear functional $\Lambda_y : x \mapsto \langle x, y \rangle$ a continuous map?

This is because of the Cauchy-Schwarz inequality, $|\langle x - z, y \rangle| \le ||y|| ||x - z||$, so Λ_y is in fact Lipschitz continuous with Lipschitz constant ||y||. This constant is also the operator norm of Λ_y , because $\sup_{x:||x||<1} ||\Lambda_y x|| = ||y||$.

1.7 Question. If E is a subset of a Hilbert space, why is E^{\perp} closed?

To see this, we write

$$\mathsf{E}^{\perp} = \cap_{\mathsf{y} \in \mathsf{E}} \{ \mathsf{x} \in \mathcal{H} : \langle \mathsf{x}, \mathsf{y} \rangle = \mathsf{0} \}$$

and note that each set $\{x \in \mathcal{H} : \langle x, y \rangle = 0\} = \Lambda_y^{-1}(\{0\})$ is closed because it is the inverse image of a closed set under a continuous map. In fact, from the kernel of Λ_y being a subspace, we see E^{\perp} is the intersection of closed subspaced, thus itself a closed subspace.

We recall that completeness is a key property of Hilbert spaces. Fortunately, one can always pass from an inner product space to a possibly larger Hilbert space.

1.8 Theorem. If \mathcal{H} is an inner product space and $\widehat{\mathcal{H}}$ the (metric) completion of \mathcal{H} , then the inner product on \mathcal{H} extends uniquely to an inner product on $\widehat{\mathcal{H}}$.

To see this, one considers the extension of the associated norm on \mathcal{H} , which is uniformly continuous. By continuity of the extension, the resulting norm on $\widehat{\mathcal{H}}$ is uniquely determined and satisfies the parallelogram identity, hence belongs to an inner product. Using that \mathcal{H} is dense in its completion, the continuity of the inner product on $\widehat{\mathcal{H}}$ shows that this is the unique continuous extension of the inner product from \mathcal{H} .

We consider examples of Hilbert spaces.

- 1.9 Examples. 1. The n-dimensional complex Euclidean space \mathbb{C}^n is equipped with the inner product $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$ which turns it into a Hilbert space.
 - 2. The space of complex square-summable sequences $\ell^2 \equiv \ell^2(\mathbb{N})$ is also a Hilbert space when the inner product is chosen as $\langle x, y \rangle = \sum_{j=1}^{\infty} x_j \overline{y_j}$.
 - 3. The space of continuous functions C([a, b]) on the interval from a to b with

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{a}^{b} \mathbf{f}(\mathbf{x}) \overline{\mathbf{g}(\mathbf{x})} d\mathbf{x}$$

is an inner product space with completion $L^2([a, b])$.

Next, we review the most fundamental results on orthogonality.

- **1.10 Theorem.** The orthogonal complement has the following properties:
 - (a) If F is a closed subspace of a Hilbert space, then $\mathcal{H} = F \oplus F^{\perp}$, so \mathcal{H} is the direct sum of the (closed) subspaces F and F^{\perp} .
 - (b) If $E \subset H$ is a subset, then $(E^{\perp})^{\perp} = \overline{\operatorname{span} E}$. In particular, $E = (E^{\perp})^{\perp}$ if and only if E is a closed subspace.

Before proving the two parts of this theorem, we introduce a special linear map associated with closed subspaces.

1.11 Definition. Let \mathcal{H} be a Hilbert space and F a closed subspace, then there is a bounded linear map $P : \mathcal{H} \to \mathcal{H}$ such that for each $x \in \mathcal{H}$, $Px \in F$ and $||x - Px|| \le ||x - y||$ for each $y \in F$.

We call P the orthogonal projection onto F, which becomes clear when considering the following geometric property.

1.12 Proposition. If P is the orthogonal projection associated with a closed subspace F in a Hilbert space, then for each $x \in H$, $y \in F$,

$$\langle \mathbf{x} - \mathbf{P}\mathbf{x}, \mathbf{y} \rangle = \mathbf{0}$$
.

Proof. Taking squares, for any $y \in F$ and $t \in \mathbb{R}$, we have

$$|x - Px||^2 \le ||x - Px + ty||^2$$
.

So at t = 0 the right-hand side achieves its minimum and by this being a real quadratic polynomial, the derivative vanishes, so

$$2\operatorname{Re}[\langle \mathbf{x} - \mathbf{P}\mathbf{x}, \mathbf{y} \rangle] = 0$$
.

Replacing y by iy and using sesqui-linearity of the inner product gives that the derivative with respect to t at t = 0 yields

$$2\mathrm{Im}[\langle \mathbf{x} - \mathbf{P}\mathbf{x}, \mathbf{y} \rangle] = \mathbf{0}.$$

We conclude $x - Px \perp y$.

Figure 1: The relationship between the orthogonal projection of a vector x, x - Px, and the range of P (the subspace shaded in blue) is illustrated here. In particular, $x - Px \perp Px$.

This orthogonal relationship between x - Px and F is sketched in a drawing in Figure 1.

1.13 Corollary. By the orthogonality relation, we have Pythagoras $||x||^2 = ||Px||^2 + ||x - Px||^2$.

Next, we prove the two outstanding parts of the theorem.

Proof of Theorem (a). Let $x \in \mathcal{H}$, then by the above,

$$\mathbf{x} - \mathbf{P}\mathbf{x} \in \mathbf{F}^{\perp}$$
 .

so x = Px + (x - Px) and the two summands are from the spaces F and F \perp , hence $\mathcal{H} = F + F^{\perp}$.

In fact, this decomposition is unique. Assuming $x = y_1 + z_1 = y_2 + z_2$ with $y_1, y_2 \in F$ and $z_1, z_2 \in F^{\perp}$, then

$$z_1 - z_2 = y_2 - y_1$$

and the left hand side is a vector in F^{\perp} , the right hand side in F, and both sides are equal, so they must be $\{0\} = F \cap F^{\perp}$. We conclude $z_1 = z_2$ and $y_2 = y_1$, the claimed uniqueness.

We continue with proving the second part of the theorem.

Proof of Theorem (b). Take $x \in E$. By definition, for each $y \in E^{\perp}$, $\langle x, y \rangle = 0$, so $x \in (E^{\perp})^{\perp}$ and we have shown $E \subset (E^{\perp})^{\perp}$.

What is left is the reverse inclusion. From $(E^{\perp})^{\perp}$ being an orthogonal complement, it is a closed subspace (see warm-up exercise). This means we can retain the inclusion upon enlarging E to its closed linear span

$$\overline{\operatorname{span}(\mathsf{E})} \subset (\mathsf{E}^{\perp})^{\perp}$$
.

Now considering $F = \overline{\operatorname{span}(E)}$ and any $x \in (E^{\perp})^{\perp}$, there is a unique decomposition x = y + z with $y \in F$ and $z \in F^{\perp}$. Taking the inner product of both sides of this identity with z gives

$$\langle \mathbf{x}, \mathbf{z} \rangle = \|\mathbf{z}\|^2$$
.

From the inclusion $\operatorname{span}(E) \subset F$, we get the reverse inclusion of the orthogonal complements $F^{\perp} \subset (\operatorname{span}(E))^{\perp}$, so $z \in F^{\perp}$ is in the orthogonal complement of E, and by $x \in (E^{\perp})^{\perp}$, we get the succession of identities $\langle x, z \rangle = 0$, $||z||^2 = 0$, z = 0, and finally x = y. Thus, $x \in F$, which proves the inclusion $(E^{\perp})^{\perp} \subset \operatorname{span}(E)$.

We conclude $(E^{\perp})^{\perp} = \overline{\operatorname{span}(E)}$.

	-	-	
ſ	Γ		