
Lecture Notes from August 25, 2022
taken by Bernhard Bodmann

Last time

• From inner product spaces to Hilbert spaces,

• orthogonality, orthogonal complements,

• Chauchy-Schwarz inequality and parallelogram law,

• polarization identity

• Jordan-von-Neumann Theorem.

Warm up:

1.6 Question. If H is a Hilbert space and y a fixed vector, why is the linear functional Λy : x 7→
〈x, y〉 a continuous map?

This is because of the Cauchy-Schwarz inequality, |〈x− z, y〉| ≤ ‖y‖‖x− z‖, so Λy is in fact
Lipschitz continuous with Lipschitz constant ‖y‖. This constant is also the operator norm of Λy,
because supx:‖x‖≤1 ‖Λyx‖ = ‖y‖.
1.7 Question. If E is a subset of a Hilbert space, why is E⊥ closed?

To see this, we write
E⊥ = ∩y∈E{x ∈ H : 〈x, y〉 = 0}

and note that each set {x ∈ H : 〈x, y〉 = 0} = Λ−1
y ({0}) is closed because it is the inverse image

of a closed set under a continuous map. In fact, from the kernel of Λy being a subspace, we see
E⊥ is the intersection of closed subspaced, thus itself a closed subspace.

We recall that completeness is a key property of Hilbert spaces. Fortunately, one can always
pass from an inner product space to a possibly larger Hilbert space.

1.8 Theorem. If H is an inner product space and Ĥ the (metric) completion of H, then the

inner product on H extends uniquely to an inner product on Ĥ.

To see this, one considers the extension of the associated norm on H, which is uniformly
continuous. By continuity of the extension, the resulting norm on Ĥ is uniquely determined and
satisfies the parallelogram identity, hence belongs to an inner product. Using that H is dense in
its completion, the continuity of the inner product on Ĥ shows that this is the unique continuous
extension of the inner product from H.

We consider examples of Hilbert spaces.
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1.9 Examples. 1. The n-dimensional complex Euclidean space Cn is equipped with the inner
product 〈x, y〉 =

∑n
j=1 xjyj which turns it into a Hilbert space.

2. The space of complex square-summable sequences `2 ≡ `2(N) is also a Hilbert space when
the inner product is chosen as 〈x, y〉 =

∑∞
j=1 xjyj.

3. The space of continuous functions C([a, b]) on the interval from a to b with

〈f, g〉 =
∫b
a

f(x)g(x)dx

is an inner product space with completion L2([a, b]).

Next, we review the most fundamental results on orthogonality.

1.10 Theorem. The orthogonal complement has the following properties:

(a) If F is a closed subspace of a Hilbert space, then H = F ⊕ F⊥, so H is the direct sum of
the (closed) subspaces F and F⊥.

(b) If E ⊂ H is a subset, then (E⊥)⊥ = spanE. In particular, E = (E⊥)⊥ if and only if E is a
closed subspace.

Before proving the two parts of this theorem, we introduce a special linear map associated
with closed subspaces.

1.11 Definition. Let H be a Hilbert space and F a closed subspace, then there is a bounded
linear map P : H → H such that for each x ∈ H, Px ∈ F and ‖x − Px‖ ≤ ‖x − y‖ for each
y ∈ F.

We call P the orthogonal projection onto F, which becomes clear when considering the fol-
lowing geometric property.

1.12 Proposition. If P is the orthogonal projection associated with a closed subspace F in a
Hilbert space, then for each x ∈ H, y ∈ F,

〈x− Px, y〉 = 0 .

Proof. Taking squares, for any y ∈ F and t ∈ R, we have

‖x− Px‖2 ≤ ‖x− Px+ ty‖2 .

So at t = 0 the right-hand side achieves its minimum and by this being a real quadratic polynomial,
the derivative vanishes, so

2Re[〈x− Px, y〉] = 0 .

Replacing y by iy and using sesqui-linearity of the inner product gives that the derivative with
respect to t at t = 0 yields

2Im[〈x− Px, y〉] = 0 .

We conclude x− Px ⊥ y.
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Figure 1: The relationship between the orthogonal projection of a vector x, x − Px, and the
range of P (the subspace shaded in blue) is illustrated here. In particular, x− Px ⊥ Px.

This orthogonal relationship between x− Px and F is sketched in a drawing in Figure 1.

1.13 Corollary. By the orthogonality relation, we have Pythagoras ‖x‖2 = ‖Px‖2 + ‖x− Px‖2.

Next, we prove the two outstanding parts of the theorem.

Proof of Theorem (a). Let x ∈ H, then by the above,

x− Px ∈ F⊥ .

so x = Px+(x−Px) and the two summands are from the spaces F and F ⊥, hence H = F+ F⊥.
In fact, this decomposition is unique. Assuming x = y1 + z1 = y2 + z2 with y1, y2 ∈ F and

z1, z2 ∈ F⊥, then
z1 − z2 = y2 − y1

and the left hand side is a vector in F⊥, the right hand side in F, and both sides are equal, so
they must be {0} = F ∩ F⊥. We conclude z1 = z2 and y2 = y1, the claimed uniqueness.

We continue with proving the second part of the theorem.

Proof of Theorem (b). Take x ∈ E. By definition, for each y ∈ E⊥, 〈x, y〉 = 0, so x ∈ (E⊥)⊥

and we have shown E ⊂ (E⊥)⊥.
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What is left is the reverse inclusion. From (E⊥)⊥ being an orthogonal complement, it is a
closed subspace (see warm-up exercise). This means we can retain the inclusion upon enlarging
E to its closed linear span

span(E) ⊂ (E⊥)⊥ .

Now considering F = span(E) and any x ∈ (E⊥)⊥, there is a unique decomposition x = y + z
with y ∈ F and z ∈ F⊥. Taking the inner product of both sides of this identity with z gives

〈x, z〉 = ‖z‖2 .

From the inclusion span(E) ⊂ F, we get the reverse inclusion of the orthogonal complements
F⊥ ⊂ (span(E))⊥, so z ∈ F⊥ is in the orthogonal complement of E, and by x ∈ (E⊥)⊥, we get
the succession of identities 〈x, z〉 = 0, ‖z‖2 = 0, z = 0, and finally x = y. Thus, x ∈ F, which
proves the inclusion (E⊥)⊥ ⊂ span(E).

We conclude (E⊥)⊥ = span(E).
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